POINT2

APPROVED SET

THESE PRINTS MUST BE ON JOB SITE AT TIME OF INSPECTION

pages 1-60

STRUCTURAL ENGINEERS INC.

REVIEWED FOR CODE COMPLIANCE BY: WILLDAN ENGINEERING

Approval of these plans & specifications shall not be construed to be a permit for, or an approval of any violation of any Federal, State, County or City laws or ordinances. One set of approved plans must be kept on the job until completion.

10:59:27 AM Nov 17, 2022

Structural Calculations

for

Gazebo City of Hamilton, CA.

AUG 22 2022

POINT 2 Job No. 2022-047

August 2022

3701 Business Drive, Suite 100, Sacramento, CA 95820 Tel: 916-452-8200 Fax: 916-452-8212

Table of Contents

STRUCTURAL DESIGN REFERE	ENCES3-4
DESIGN PERAMETERS	5-7
C AND C WIND LOADING	8-15
GAZEBO FRAMING DESIGN	16-24
GAZEBO COL AND FOOTING D	ESIGN25-60

POINT 2 STRUCTURAL ENGINEERS INC.

3701 Business Drive, Suite 100, Sacramento, CA 95820 Tel: 916-452-8200 Fax: 916-452-8212

8/22/22 Page 2 of 60

STRUCTURAL DESIGN REFERENCES

- California Building Code 2019 Edition
- ASCE 7-16 Minimum Design Loads for Buildings and Other Structures

POINT 2 STRUCTURAL ENGINEERS INC.

3701 Business Drive, Suite 100, Sacramento, CA 95820 Tel: 916-452-8200 Fax: 916-452-8212

8/22/22 Page 3 of 60

ASCE 7-16 – BASIC LOAD COMBINATIONS

2.3.2 STRENGTH DESIGN/ LOAD RESISTANCE FACTOR DESIGN

- 1. 1.4D
- 2. 1.2D + 1.6L + 0.5(Lr or S or R) or

1.2D + 1.6L + 0.2D*i* +0.5S

(Section 2.3.4)

- 3. 1.2D + 1.6(Lr or S or R) + (L or 0.5W)
- 4. 1.2D + 1.0W + L + 0.5(Lr or S or R) or

1.2D + L + Di + Wi + 0.5S

(Section 2.3.4)

- 5. 1.2D + 1.0E + L + 0.2S
- 6. 0.9D + 1.0W or

0.9D + Di + Wi

(Section 2.3.4)

7. 0.9D + 1.0E

2.4.1 ALLOWABLE STRESS DESIGN/ WORKING STRESS DESIGN

- 1. D
- 2. D + L + 0.7Di

(Section 2.4.3)

- 3. D + (Lr or S or R) or
 - D + 0.7Di + 0.7Wi + S

(Section 2.4.3)

- 4. D + 0.75 L + 0.75(Lr or S or R)
- 5. D + (.6W or 0.7E)
- 6a. D + 0.75L +0.75(0.6W) + 0.75(Lr or S or R)
- 6b. D + 0.75L + 0.75(.7E) + 0.75S
- 7. 0.6D + .6W or

0.6D + 0.7Di + 0.7Wi

(Section 2.4.3)

8. 0.6D + 0.7E

D = Dead load Di = Weight of iceL = Live load Lr = Live load (roof)

S = Snow load R = Rain Load

W= Wind load Wi= Wind on ice

E= Earthquake load

POINT 2 STRUCTURAL ENGINEERS INC.

3701 Business Drive, Suite 100, Sacramento, CA 95820 Tel: 916-452-8200 Fax: 916-452-8212

DESIGN PARAMETERS

POINT 2 STRUCTURAL ENGINEERS INC.

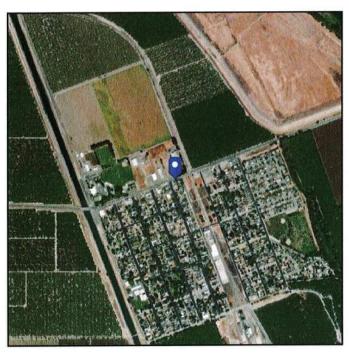
3701 Business Drive, Suite 100, Sacramento, CA 95820 Tel: 916-452-8200 Fax: 916-452-8212

Address:

Hamilton City California,

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-16


Risk Category: II

Soil Class: D - Stiff Soil

Elevation: 151.38 ft (NAVD 88)

Latitude: 39.74609

Longitude: -122.01366

Wind

Results:

Wind Speed 94 Vmph 10-year MRI 65 Vmph 25-year MRI 71 Vmph 50-year MRI 76 Vmph 100-year MRI 80 Vmph

Data Source:

ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4, and Section 26.5.2

Date Accessed:

Wed Jun 01 2022

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Seismic

Site Soil Class: D - Stiff Soil

Results:

N/A S_{D1} : S_s : 0.824 TL: 16 S_1 : 0.337 PGA: 0.367 Fa: 1.17 PGA M: 0.452 F_{v} : N/A F_{PGA} : 1.233 S_{MS} : 0.964 l_e : 1 N/A S_{M1}: 0.643 C_v : 1.212 SDS :

Ground motion hazard analysis may be required. See ASCE/SEI 7-16 Section 11.4.8.

Data Accessed:

Wed Jun 01 2022

Date Source:

USGS Seismic Design Maps

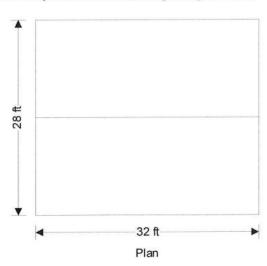
C AND C WIND LOADING

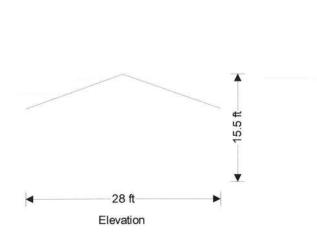
POINT 2 STRUCTURAL ENGINEERS INC.

3701 Business Drive, Suite 100, Sacramento, CA 95820 Tel: 916-452-8200 Fax: 916-452-8212

Tedds calculation version 2.1.11

Point 2 Structural Engineers Inc


3701 Business Dr Suite 100 Sacramento, CA 95820


	Gazcoo			20,	<u> </u>			
Project	pject				Job Ref.			
Section				Sheet no./rev				
Calc. by	Date 8/8/2022	Chk'd by	Date	App'd by	Date			

WIND LOADING

In accordance with ASCE7-16

Using the components and cladding design method

Building data

Wind flow

Type of roof Gable free
Length of building b = 32.00 ftWidth of building d = 28.00 ftHeight to eaves H = 10.50 ftPitch of roof $\alpha_0 = 19.5 \text{ deg}$ Mean height h = 12.98 ft

General wind load requirements

Basic wind speed V = 94.0 mphRisk category II Velocity pressure exponent coef (Table 26.6-1) $K_d = 0.85$

Velocity pressure exponent coef (Table 26.6-1) $K_d = 0.85$ Ground elevation above sea level $z_{gl} = 33$ ft

Ground elevation factor $K_e = \exp(-0.0000362 \times z_g/1 \text{ft}) = 1.00$

Exposure category (cl 26.7.3) C

Enclosure classification (cl.26.12) Open buildings

Internal pressure coef +ve (Table 26.13-1) $GC_{pi_p} = 0.00$ Internal pressure coef –ve (Table 26.13-1) $GC_{pi_n} = 0.00$

Gust effect factor $G_f = 0.85$

Topography

Topography factor not significant $K_{zt} = 1.0$

Velocity pressure

Velocity pressure coefficient (Table 26.10-1) $K_z = 0.85$

Velocity pressure $q_h = 0.00256 \times K_z \times K_{zt} \times K_d \times K_e \times V^2 \times 1 psf/mph^2 = 16.3 psf$

Clear

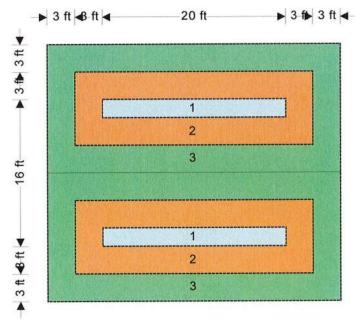
3701 Business Dr Suite 100 Sacramento, CA 95820

	Gazebo				122-04/	
Project				Job Ref.		
Section				Sheet no./rev		
Calc. by	Date 8/8/2022	Chk'd by	Date	App'd by	Date	

Peak velocity pressure for internal pressure

Peak velocity pressure – internal (as roof press.) q_i = 16.32 psf

Equations used in tables


Net pressure

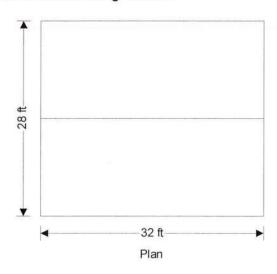
$$p = q_h \times [GC_p - GC_{pi}]$$

Components and cladding pressures - Roof (Figure 30.7-2)

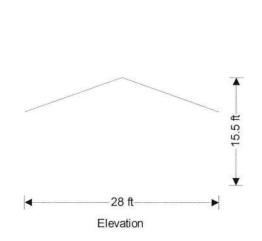
Component	Zone	Length (ft)	Width (ft)	Eff. area (ft²)	+C _N	-C _N	Pres (+ve) (psf)	Pres (-ve) (psf)
<=9 sf	1	-	120	9.0	1.16	-1.04	16.1	-14.4 #
18 sf	1	-	-	18.0	1.16	-1.04	16.1	-14.4 #
>36 sf	1		-	36.1	1.16	-1.04	16.1	-14.4 #
<=9 sf	2	-		9.0	1.79	-1.61	24.8	-22.3
18 sf	2	-	-	18.0	1.79	-1.61	24.8	-22.3
>36 sf	2	-	-	36.1	1.16	-1.04	16.1	-14.4 #
<=9 sf	3		-	9.0	2.32	-2.08	32.2	-28.9
18 sf	3			18.0	1.79	-1.61	24.8	-22.3
>36 sf	3		120	36.1	1.16	-1.04	16.1	-14.4 #

The final net design wind pressure, including all permitted reductions, used in the design shall not be less than 16psf acting in either direction

Plan on roof


City of Hamilton		Gazebo			20	22-047	
Tekla Tedds	Project				Job Ref.		
Point 2 Structural Engineers Inc 3701 Business Dr	Section				Sheet no./rev	<i>t.</i>	
Suite 100 Sacramento, CA 95820	Calc. by	Date	Chk'd by	Date	App'd by	Date	

8/8/2022


WIND LOADING

In accordance with ASCE7-16

Using the directional design method

В

Building data

Type of roof Gable free Length of building b = 32.00 ft Width of building d = 28.00 ft Height to eaves H = 10.50 ft α_0 = 19.5 deg Mean height h = 12.98 ft Wind flow Clear

General wind load requirements

 $\begin{array}{ll} \mbox{Basic wind speed} & \mbox{V = 94.0 mph} \\ \mbox{Risk category} & \mbox{II} \\ \mbox{Velocity pressure exponent coef (Table 26.6-1)} & \mbox{K}_{d} = 0.85 \\ \mbox{Ground elevation above sea level} & \mbox{z}_{gl} = 33 \mbox{ ft} \\ \end{array}$

Ground elevation factor $K_e = \exp(-0.0000362 \times z_{gl}/1ft) = 1.00$

Exposure category (cl 26.7.3)

Enclosure classification (cl.26.12) Open buildings Internal pressure coef +ve (Table 26.13-1) $GC_{pi_p} = 0.00$ Internal pressure coef –ve (Table 26.13-1) $GC_{pi_n} = 0.00$ Gust effect factor $G_f = 0.85$

Topography

Topography factor not significant $K_{zt} = 1.0$

Velocity pressure

Velocity pressure coefficient (Table 26.10-1) $K_z = 0.85$

Velocity pressure $q_h = 0.00256 \times K_z \times K_{zt} \times K_d \times K_e \times V^2 \times 1 psf/mph^2 = 16.3 psf$

Tedds calculation version 2.1.11

City of Hamilton Gazebo 2022-047 Tekla. Tedds Project Job Ref. Point 2 Structural Engineers Inc Section Sheet no./rev. 3701 Business Dr Suite 100 App'd by Date Chk'd by Date Date Calc. by Sacramento, CA 95820

Peak velocity pressure for internal pressure

Peak velocity pressure – internal (as roof press.) q_i = 16.32 psf

В

Pressures and forces

Net pressure

 $p = q_h \times G \times C_N$

Net force

 $F_w = p \times A_{ref}$

8/8/2022

Minimum design wind loading (cl.27.1.5)

 $p_{min_r} = 16 lb/ft^2$

Roof load case 1 - Wind 0 - Loadcase A

Zone	Ref. height (ft)	Ext pressure coefficient	Peak velocity pressure qh (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
1 (+ve)	12.98	1.10	16.32	15.26	475.26	7.25
2 (+ve)	12.98	-0.10	16.32	-1.39	475.26	-0.66

Total vertical net force

 $F_{w,v} = 6.22 \text{ kips}$

Total horizontal net force

 $F_{w,h} = 2.64 \text{ kips}$

Minimum loading

Projected vertical area of roof

A_{vert r 0} = $b \times d/2 \times tan(\alpha_0) = 158.65 \text{ ft}^2$

Minimum overall horizontal loading

 $F_{w,total_min} = p_{min_r} \times A_{vert_r_0} = 2.54 \text{ kips}$

Roof load case 2 - Wind 0 - Loadcase B

Zone	Ref. height (ft)	Ext pressure coefficient	Peak velocity pressure qh (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
1 (+ve)	12.98	-0.02	16.32	-0.28	475.26	-0.13
2 (+ve)	12.98	-0.92	16.32	-12.77	475.26	-6.07

Total vertical net force

F_{w,v} = -5.84 kips

Total horizontal net force

 $F_{w,h} = 1.98 \text{ kips}$

Minimum loading

Projected vertical area of roof

 $A_{\text{vert}_{r_0}} = b \times d/2 \times \tan(\alpha_0) = 158.65 \text{ ft}^2$

Minimum overall horizontal loading

 $F_{w,total_min} = p_{min_r} \times A_{vert_r_0} = 2.54 \text{ kips}$

Roof load case 3 - Wind 90 - Loadcase A

Zone	Ref. height (ft)	Ext pressure coefficient	Peak velocity pressure qh (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
1 (+ve)	12.98	-0.80	16.32	-11.10	385.52	-4.28
2 (+ve)	12.98	-0.60	16.32	-8.33	385.52	-3.21
3 (+ve)	12.98	-0.30	16.32	-4.16	179.48	-0.75

Total vertical net force

 $F_{w,v} = -7.76 \text{ kips}$

Total horizontal net force

 $F_{w,h} = 0.00 \text{ kips}$

Minimum loading

Projected vertical area of roof

 $A_{\text{vert}_r_{90}} = 0.00 \text{ ft}^2$

Minimum overall horizontal loading

 $F_{w,total_min} = p_{min_r} \times A_{vert_r_90} = 0.00 \text{ kips}$

City of Hamilton		Gazebo			20	22-047	
Tekla Tedds	Project				Job Ref.		
Point 2 Structural Engineers Inc. 3701 Business Dr	Section				Sheet no./rev	t.	
Suite 100 Sacramento, CA 95820	Calc. by	Date 8/8/2022	Chk'd by	Date	App'd by	Date	

Roof load case 4 - Wind 90 - Loadcase B

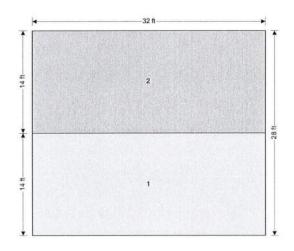
Zone	Ref. height (ft)	Ext pressure coefficient	Peak velocity pressure qh (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
1 (+ve)	12.98	0.80	16.32	11.10	385.52	4.28
2 (+ve)	12.98	0.50	16.32	6.94	385.52	2.67
3 (+ve)	12.98	0.30	16.32	4.16	179.48	0.75

Total vertical net force

Total horizontal net force

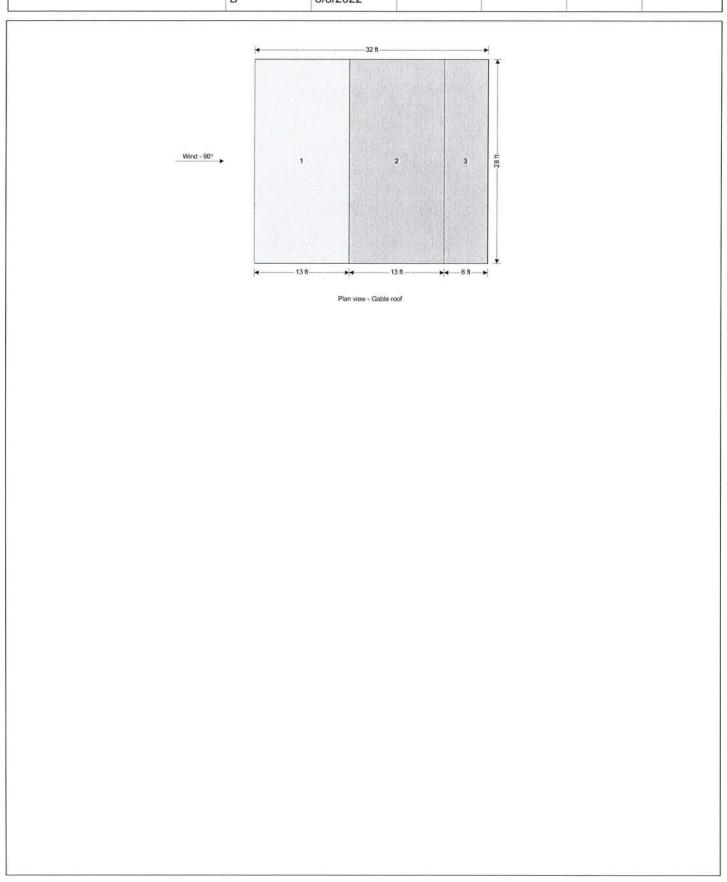
 $F_{w,v} = 7.26 \text{ kips}$

 $F_{w,h} = 0.00 \text{ kips}$

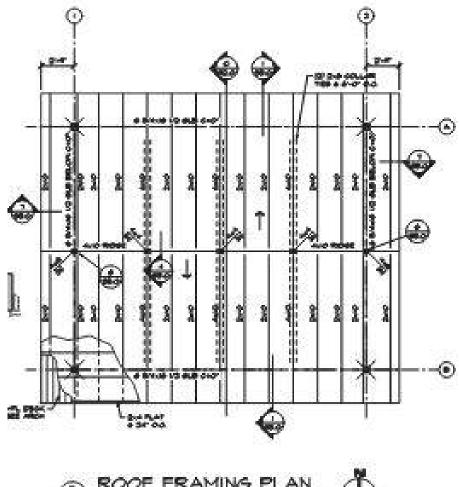

Minimum loading

Projected vertical area of roof

 $A_{vert_r_{90}} = 0.00 \text{ ft}^2$


Minimum overall horizontal loading

 $F_{w,total_min} = p_{min_r} \times A_{vert_r_90} = 0.00 \text{ kips}$



City of Hamilton		Gazebo			20	22-047
Tekla Tedds	Project				Job Ref.	
Point 2 Structural Engineers Inc 3701 Business Dr	Section				Sheet no./rev	<i>t.</i>
Suite 100 Sacramento, CA 95820	Calc. by	Date 8/8/2022	Chk'd by	Date	App'd by	Date

POINT 2 STRUCTURAL ENGINEERS INC	PROJECT			PROJECT
701 BUSINESS DRIVE, SUITE 100, SACRAMENTO, CA 95820 PHONE: (916) 452-8200 FAX: (916) 452-8212	ENGINEER	DATE / /	/ PAGE	of
DEAD LOAD				
ROFING N	in	3.0		
2×4 e 24		1-0		
2x4 e 24 2x10 e 24	-8	1.8		
py		1.3		
M15C		7.4		
		10.0		
GOLAR		3.5		
		13.5		

GAZEBO ROOF FRAMING DESIGN

POINT 2 STRUCTURAL ENGINEERS INC.

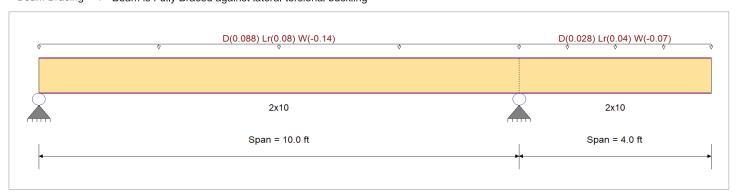
3701 Business Drive, Suite 100, Sacramento, CA 95820 Tel: 916-452-8200 Fax: 916-452-8212 City of Hamilton Point 2 Structural Engineers Inc 3701 Business Dr. Suite 100 Sacramento CA 95820 916-452-8200 Gazebo_

Project Title: Engineer: Project ID: Project Descr:

Wood Beam Project File: 2022-047.ec6

LIC#: KW-06016300, Build:20.22.7.7 POINT 2 STRUCTURAL ENGINEERING (c) ENERCALC INC 1983-2022

DESCRIPTION: roof rafter @ 24


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: ASCE 7-16

Material Properties

Analysis Method: Allowable Stress Design	Fb +	1350 psi	E : Modulus of Elastic	city
Load Combination : ASCE 7-16	Fb -	1350 psi	Ebend- xx	1600 ksi
	Fc - Prll	925 psi	Eminbend - xx	580 ksi
Wood Species : Douglas Fir-Larch	Fc - Perp	625 psi		
Wood Grade : No.1	Fv	170 psi		
	Ft	675 psi	Density	31.21 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsional buck	kling			·

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added

Load for Span Number 1

Uniform Load: D = 0.0220, Lr = 0.020, W = -0.0350 ksf, Tributary Width = 4.0 ft, (roof)

Load for Span Number 2

Uniform Load: D = 0.0140, Lr = 0.020, W = -0.0350 ksf, Tributary Width = 2.0 ft, (roof)

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.555 1 2x10		hear Stress Ratio used for this span	=	0.393 : 1 2x10
fb: Actual	=	1,030.42psi		fv: Actual	=	83.50 psi
Fb: Allowable	=	1,856.25psi		Fv: Allowable	=	212.50 psi
Load Combination		+D+Lr	Load C	ombination		+D+Lr
Location of maximum on span	=	4.693ft	Locatio	n of maximum on span	=	9.274 ft
Span # where maximum occurs	=	Span # 1	Span #	where maximum occurs	=	Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection		0.149 in Ratio = -0.162 in Ratio = 0.204 in Ratio = -0.203 in Ratio =	644 >=360 738 >=360 589 >=180 472 >=180	Span: 2 : W Only Span: 2 : Lr Only Span: 2 : +0.60D+0.60W Span: 2 : +D+Lr		

Maximum Fo	rces & Stresse	s for Load	Combinations
------------	----------------	------------	--------------

Waxiiiiuiii FOI					COIIII	Jiiiau	Ulis									
Load Combination		Max Stre	ess Ratio	S							Mor	nent Values	3	S	hear Val	ues
Segment Length	Span #	М	V	C_d	C _{F/V}	Сį	c_r	c_m	С _t	CL	М	fb	F'b	V	fv	F'v
D Only													0.00	0.00	0.00	0.00
Length = 10.0 ft	1	0.416	0.282	0.90	1.100	1.00	1.00	1.00	1.00	1.00	0.99	555.86	1336.50	0.40	43.08	153.00
Length = 4.0 ft	2	0.094	0.282	0.90	1.100	1.00	1.00	1.00	1.00	1.00	0.22	125.66	1336.50	0.09	43.08	153.00
+D+Lr					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 10.0 ft	1	0.555	0.393	1.25	1.100	1.00	1.00	1.00	1.00	1.00	1.84	1,030.42	1856.25	0.77	83.50	212.50
Length = 4.0 ft	2	0.164	0.393	1.25	1.100	1.00	1.00	1.00	1.00	1.00	0.54	305.18	1856.25	0.22	83.50	212.50
+D+0.750Lr					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 10.0 ft	1	0.491	0.345	1.25	1.100	1.00	1.00	1.00	1.00	1.00	1.63	911.77	1856.25	0.68	73.40	212.50
Length = 4.0 ft	2	0.140	0.345	1.25	1.100	1.00	1.00	1.00	1.00	1.00	0.46	260.30	1856.25	0.19	73.40	212.50
+D+0.60W					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00

Gazebo
Project Title:
Engineer:
Project ID:
Project Descr:

Project File: 2022-047.ec6 **Wood Beam**

LIC#: KW-06016300, Build:20.22.7.7 POINT 2 STRUCTURAL ENGINEERING (c) ENERCALC INC 1983-2022

DESCRIPTION: roof rafter @ 24

Maximum Forces & Stresses for Load Combinations

Load Combination	N	∕lax Stre	ess Ratio	S							Mom	ent Value	3	S	hear Val	ues
Segment Length	Span #	M	V	C_d	$C_{F/V}$	Сį	c_r	c_m	C t	C ^L	М	fb	F'b	V	fv	F'v
Length = 10.0 ft	1	0.029	0.018	1.60	1.100	1.00	1.00	1.00	1.00	1.00	0.12	68.26	2376.00	0.05	4.90	272.00
Length = 4.0 ft	2	0.026	0.018	1.60	1.100	1.00	1.00	1.00	1.00	1.00	0.11	62.83	2376.00	0.05	4.90	272.00
+D+0.750Lr+0.450W	1				1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 10.0 ft	1	0.226	0.153	1.60	1.100	1.00	1.00	1.00	1.00	1.00	0.96	538.07	2376.00	0.38	41.56	272.00
Length = 4.0 ft	2	0.050	0.153	1.60	1.100	1.00	1.00	1.00	1.00	1.00	0.21	118.93	2376.00	0.09	41.56	272.00
+D+0.450W					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 10.0 ft	1	0.077	0.044	1.60	1.100	1.00	1.00	1.00	1.00	1.00	0.33	183.25	2376.00	0.11	11.85	272.00
Length $= 4.0 \text{ ft}$	2	0.007	0.044	1.60	1.100	1.00	1.00	1.00	1.00	1.00	0.03	15.71	2376.00	0.01	11.85	272.00
+0.60D+0.60W					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 10.0 ft	1	0.070	0.061	1.60	1.100	1.00	1.00	1.00	1.00	1.00	0.30	165.89	2376.00	0.15	16.59	272.00
Length $= 4.0 \text{ ft}$	2	0.048	0.061	1.60	1.100	1.00	1.00	1.00	1.00	1.00	0.20	113.10	2376.00	0.08	16.59	272.00
+0.60D					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 10.0 ft	1	0.140	0.095	1.60	1.100	1.00	1.00	1.00	1.00	1.00	0.59	333.52	2376.00	0.24	25.85	272.00
Length = 4.0 ft	2	0.032	0.095	1.60	1.100	1.00	1.00	1.00	1.00	1.00	0.13	75.40	2376.00	0.05	25.85	272.00

Overall Maximum Deflections

Load Combination	Span	Max. "-" Deti Loca	ation in Span	Load Combination	Max. "+" Deti Loca	tion in Span
+D+Lr	1	0.2037	4.916		0.0000	0.000
	2	0.0000	4.916	+D+Lr	-0.2028	4.000

Vertical Reactions	Support notation : Far left is #1	values in KIPS
Load Combination	Support 1 Support 2 Support 3	

Overall MAXimum	0.786	1.166
Overall MINimum	0.368	0.592
D Only	0.418	0.574
+D+Lr	0.786	1.166
+D+0.750Lr	0.694	1.018
+D+0.60W	0.031	-0.047
+D+0.750Lr+0.450W	0.404	0.552
+D+0.450W	0.128	0.108
+0.60D+0.60W	-0.136	-0.277
+0.60D	0,251	0.345
Lr Only	0.368	0.592
W Only	-0.644	-1.036

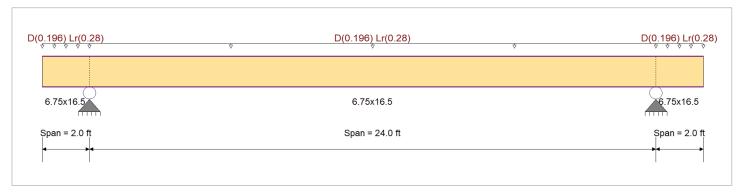
City of Hamilton Point 2 Structural Engineers Inc 3701 Business Dr. Suite 100 Sacramento CA 95820 916-452-8200 Gazebo

Project Title: Engineer: Project ID: Project Descr:

Wood Beam Project File: 2022-047.ec6

LIC#: KW-06016300, Build:20.22.7.7 POINT 2 STRUCTURAL ENGINEERING (c) ENERCALC INC 1983-2022

DESCRIPTION: East west GL


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: ASCE 7-16

Material Properties

Analysis Method : Allowable Stress Design	Fb+	2,400.0 psi	E : Modulus of Elasi	ticity
Load Combination : ASCE 7-16	Fb -	1,850.0 psi	Ebend- xx	1,800.0 ksi
	Fc - Prll	1,650.0 psi	Eminbend - xx	950.0 ksi
Wood Species : DF/DF	Fc - Perp	650.0 psi	Ebend- yy	1,600.0 ksi
Wood Grade : 24F-V4	Fv	265.0 psi	Eminbend - yy	850.0 ksi
	Ft	1,100.0 psi	Density	31.210 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsional buckling	ıg		·	·

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading

Load for Span Number 1

Uniform Load: D = 0.0140, Lr = 0.020 ksf, Tributary Width = 14.0 ft

Load for Span Number 2

Uniform Load: D = 0.0140, Lr = 0.020 ksf, Tributary Width = 14.0 ft

Load for Span Number 3

Uniform Load: D = 0.0140, Lr = 0.020 ksf, Tributary Width = 14.0 ft

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.492 1 6.75x16.5		hear Stress Ratio used for this span	=	0.219 : 1 6.75x16.5
fb: Actual	=	1,371.57psi		fv: Actual	=	72.68 psi
Fb: Allowable	=	2,789.53psi		Fv: Allowable	=	331.25 psi
Load Combination		+D+Lr	Load C	ombination		+D+Lr
Location of maximum on span	=	11.899ft	Locatio	n of maximum on span	=	2.000 ft
Span # where maximum occurs	=	Span # 2	Span #	where maximum occurs	=	Span # 1
Maximum Deflection						
Max Downward Transient Deflect	ion	0.450 in Ratio =	639 >= 360	Span: 2 : Lr Only		
Max Upward Transient Deflection	1	-0.117 in Ratio =	408 >= 360	Span: 3 : Lr Only		
Max Downward Total Deflection		0.804 in Ratio =	358 >=180	Span: 2 : +D+Lr		
Max Upward Total Deflection		-0.209 in Ratio =	228 >=180	Span: 3 : +D+Lr		

Maximum F	orcoe & G	Straceae f	orlo	ad Cam	hinatione

Load Combination	ľ	Max Stre	ess Ratio	s							Mor	nent Values	3	S	hear Val	ues
Segment Length	Span #	М	V	c_d	$C_{F/V}$	Сį	c_r	c_m	С _t	C ^L	М	fb	F'b	V	fv	F'v
D Only													0.00	0.00	0.00	0.00
Length = 2.0 ft	1	0.010	0.134	0.90	1.000	1.00	1.00	1.00	1.00	1.00	0.44	17.25	1665.00	2.38	31.99	238.50
Length = 24.0 ft	2	0.301	0.134	0.90	0.930	1.00	1.00	1.00	1.00	1.00	15.41	603.70	2008.46	2.38	31.99	238.50
Length = 2.0 ft	3	0.010	0.134	0.90	1.000	1.00	1.00	1.00	1.00	1.00	0.44	17.25	1665.00	0.14	31.99	238.50
+D+Lr					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 2.0 ft	1	0.017	0.219	1.25	1.000	1.00	1.00	1.00	1.00	1.00	1.00	39.19	2312.50	5.40	72.68	331.25
Length = 24.0 ft	2	0.492	0.219	1.25	0.930	1.00	1.00	1.00	1.00	1.00	35.01	1,371.57	2789.53	5.40	72.68	331.25
Length = 2.0 ft	3	0.017	0.219	1.25	1.000	1.00	1.00	1.00	1.00	1.00	1.00	39.19	2312.50	0.32	72.68	331.25

2022-047

Gazebo
Project Title:
Engineer:
Project ID:
Project Descr:

Wood Beam Project File: 2022-047.ec6

(c) ENERCALC INC 1983-2022 LIC#: KW-06016300, Build:20.22.7.7 POINT 2 STRUCTURAL ENGINEERING

DESCRIPTION: East west GL

Load Combination	1	Max Stre	ess Ratio	s							Mon	nent Value	S	S	hear Val	ues
Segment Length	Span #	М	V	c_d	$C_{F/V}$	Сį	c_r	c_{m}	$c_t c_l$	_	М	fb	F'b	V	fv	F'v
+D+0.750Lr					1.000	1.00	1.00	1.00	1.00 1.	.00			0.00	0.00	0.00	0.00
Length = 2.0 ft	1	0.015	0.189	1.25	1.000	1.00	1.00	1.00	1.00 1.	.00	0.86	33.71	2312.50	4.64	62.51	331.25
Length = 24.0 ft	2	0.423	0.189	1.25	0.930	1.00	1.00	1.00	1.00 1.	.00 3	30.11	1,179.60	2789.53	4.64	62.51	331.25
Length = 2.0 ft	3	0.015	0.189	1.25	1.000	1.00	1.00	1.00	1.00 1.	.00	0.86	33.71	2312.50	0.27	62.51	331.25
+0.60D					1.000	1.00	1.00	1.00	1.00 1.	.00			0.00	0.00	0.00	0.00
Length = 2.0 ft	1	0.003	0.045	1.60	1.000	1.00	1.00	1.00	1.00 1.	.00	0.26	10.35	2960.00	1.43	19.19	424.00
Length = 24.0 ft	2	0.101	0.045	1.60	0.930	1.00	1.00	1.00	1.00 1.	.00	9.25	362.22	3570.60	1.43	19.19	424.00
Length = 2.0 ft	3	0.003	0.045	1.60	1.000	1.00	1.00	1.00	1.00 1.	.00	0.26	10.35	2960.00	0.08	19.19	424.00

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl I	Location in Span	Load Combination	Max. "+" Defl	Location in Span
	1	0.0000	0.000	+D+Lr	-0.2094	0.000
+D+Lr	2	0.8041	12.101		0.0000	0.000
	3	0.0000	12.101	+D+Lr	-0.2094	2.000

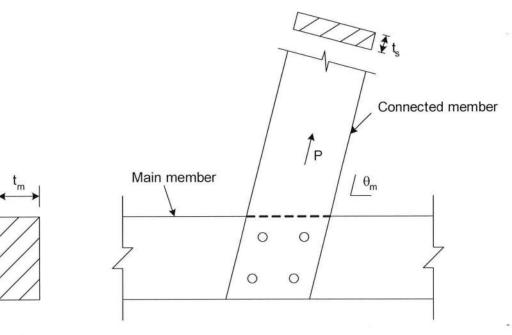
Vertical Reactions	Support notation : Far left is #1	Values in KIPS

Load Combination	Support 1 Support 2	Support 3 Support 4
Overall MAXimum	7.002	7.002
Overall MINimum	3.920	3.920
D Only	3.082	3.082
+D+Lr	7.002	7.002
+D+0.750Lr	6.022	6.022
+0.60D	1.849	1.849
Lr Only	3 920	3.920

City of Hamilton POINT 2 STRUCTURAL ENGINEERS INC	Gazebo PROJECT CLIENT			2022-047	PROJECT NO
3701 BUSINESS DRIVE, SUITE 100, SACRAMENTO, CA 95820 PHONE: (916) 452-8200 FAX: (916) 452-8212	ENGINEER	DATE	1 1	PAGE	of
0 = 19.5°					
340 BUT					
			410		
			EACH	8	OF
	2				
		4x -	1		
II 1/2" 6	1/4" 1/2"	€ (2) 9/4°¢			
7	(2) 2×8 *	BOLTS W MALLEABLE MASHERS 6'-0" O.C.			
(53.0)	TAIL 1'-0" 0440ET006				

3701 Business Dr Suite 100 Sacramento, CA 95820

Project		Job Ref.				
Section				Sheet no./rev		
Calc. by	Date 8/3/2022	Chk'd by	Date	App'd by	Date	


BOLTED TIMBER TO TIMBER CONNECTION DESIGN

In accordance with NDS 2018

Tedds calculation version 1.2.04

Design results summary

	Unit	Required	Provided	Utilization	Result	
Connection capacity	lbs	2500	3984	0.628	PASS	

Main timber member details

Douglas Fir-Larch Species of main member

4 x 10 Size of main member (Table 1B) Number of main member $N_m = 1$ $t_m = 3.500 in$ Thickness of main member

 $\theta_m = 20^{\circ}$ Angle of load to grain of main member

Connected timber member details

Species of connected member Douglas Fir-Larch

Size of connected member (Table 1B) 2 x 8 $N_s = 2$ Number of connected member Thickness of connected member $t_s = 1.500 in$ $N_{int} = (N_m + N_s) - 1 = 2$

Number of interfaces

Bolt details

Bolt diameter (Table L1) 3/4" R = 1Number of rows of bolts C = 2Number of columns of bolts

 $N_{total} = R \times C = 2$ Total number of bolts

S08001				
	Tek	2	00	de
7	ICN	a e	ıcu	us

3701 Business Dr Suite 100

Sacramento, CA 95820

Project			Job Ref.			
Section	Electrical de la constant de la cons			Sheet no./rev	i.	
Calc. by	Date 8/3/2022	Chk'd by	Date	App'd by	Date	

Applied load

Applied load to the connection

P = 2500 lb

Dowel bearing length (main) (12.3.5)

Dowel bearing length in main member

 $I_{m} = t_{m} = 3.500 \text{ in}$

Dowel bearing length (connected) (12.3.5)

Dowel bearing length in connected member

 $I_s = t_s = 1.500 \text{ in}$

Bending yield strength (bolt) (Table 12A to 12I footnote no. 2)

Bending yield strength of bolt

 $F_{yb} = 45000 \text{ psi}$

Dowel bearing strength (main member) (Table 12.3.3 footnote no. 2)

Dowel bearing strength parallel to grain

 $F_{e par} = 11200 \times G_m \times 1 \text{ psi} = 5600 \text{ psi}$

Dowel bearing strength perpendicular to grain

 $F_{e_perp} = 6100 \times G_m^{1.45} \times 1 \text{ psi } / \sqrt{(D / 1 \text{ in})} = 2578 \text{ psi}$

Dowel bearing strength for small dia. fasteners

 $F_e = 16600 \times G_m^{1.84} \times 1 \text{ psi} = 4637 \text{ psi}$

Dowel bearing strength at an angle of load to grain $F_{e\theta m} = (F_{e_par} \times F_{e_perp}) / ((F_{e_par} \times (sin(\theta_m))^2) + (F_{e_perp} \times (cos(\theta_m))^2))$

 $F_{e\theta m} = 4925 \text{ psi}$

Dowel bearing strength of main member

Fem = 4925 psi

Dowel bearing strength (connected timber member) (Table 12.3.3 footnote no. 2)

Dowel bearing strength parallel to grain

 $F_{e \ par} = 11200 \times G_{s} \times 1 \text{ psi} = 5600 \text{ psi}$

Dowel bearing strength perpendicular to grain

 $F_{e perp} = 6100 \times G_s^{1.45} \times 1 \text{ psi} / \sqrt{(D / 1 \text{ in})} = 2578 \text{ psi}$

Dowel bearing strength for small dia. fasteners

 $F_e = 16600 \times G_s^{1.84} \times 1 \text{ psi} = 4637 \text{ psi}$

Dowel bearing strength at an angle of load to grain $F_{e\theta s} = (F_{e,par} \times F_{e,perp}) / ((F_{e,par} \times (sin(\theta_s))^2) + (F_{e,perp} \times (cos(\theta_s))^2))$

 $F_{e\theta s} = 5600 \text{ psi}$

Dowel bearing strength of connected member

Fes = 5600 psi

Preliminary yield limit equation coefficients (Table 12.3.1A notes)

Dowel bearing strength ratio

 $R_e = F_{em} / F_{es} = 0.879$

Dowel bearing length ratio

 $R_t = I_m / I_s = 2.333$

Preliminary yield limit equation coefficient k1

 $k_1 = ((\sqrt{(R_e + (2 \times R_e^2 \times (1 + R_t + R_t^2)) + (R_t^2 \times R_e^3))}) - (R_e \times (1 + R_t)))/(1 + R_e)$

 $k_1 = 0.708$

Preliminary yield limit equation coefficient k2

 $k_2 = -1 + \sqrt{((2 \times (1 + R_e)) + ((2 \times F_{yb} \times (1 + (2 \times R_e)) \times D^2))/(3 \times F_{em} \times I_m^2))}$

 $k_2 = 1.129$

Preliminary yield limit equation coefficient k₃

 $k_3 = -1 + \sqrt{(((2 \times (1 + R_e))/R_e) + ((2 \times F_{yb} \times (2 + R_e) \times D^2))/(3 \times F_{em} \times I_s^2))}$

 $k_3 = 1.943$

Angle of load to grain coefficient ke

 $k_{\theta} = 1 + (0.25 \times max (\theta_m, \theta_s) / 90) = 1.056$

Yield limit equations (double shear)

Mode Im (eq. 12.3-7)

 $Z_{lm} = (D \times I_m \times F_{em}) / (4 \times k_\theta) = 3062 \text{ lb}$

Mode Is (eq. 12.3-8)

 $Z_{ls} = (2 \times D \times I_s \times F_{es}) / (4 \times k_{\theta}) = 2984 \text{ lb}$

Mode IIIs (eq. 12.3-9)

 $Z_{IIIs} = (2 \times k_3 \times D \times I_s \times F_{em}) / ((2 + R_e) \times 3.2 \times k_\theta) = 2213 \text{ lb}$

Mode IV (eq. 12.3-10)

 $Z_{IV} = (2 \times D^2) \times (\sqrt{((2 \times F_{em} \times F_{yb}) / (3 \times (1 + R_e))))} / (3.2 \times k_0) = 2953 \text{ lb}$

 $Z = min (Z_{lm}, Z_{ls}, Z_{llls}, Z_{lV}) = 2213 lb$

Nominal capacity of single fastener

Z = 2213 lb

3701 Business Dr Suite 100 Sacramento, CA 95820

Project			Job Ref.		
Section				Sheet no./rev	<i>t</i> .
Calc. by	Date 8/3/2022	Chk'd by	Date	App'd by	Date

Slenderness (Table 12.5.1C footnote no.1)

Slenderness

I/D = 4.000

Spacing requirements (perpendicular to grain loading)

End distance (Table 12.5.1A)

End distance (full stregnth)

End distance (minimum)

 $a_{q_min} = 2 \times D = 1.500$ in $a_0 = 3.000 in$

End distance (actual)

Edge distance (Table 12.5.1C)

Loaded edge

 $e_q = 4 \times D = 3.000$ in

 $a_{q_{full}} = 4 \times D = 3.000 \text{ in}$

Unloaded edge

 $e_p = 1.5 \times D = 1.125$ in

Center to center spacing (Table 12.5.1B)

Center to center spacing (full strength)

 $s_{full} = 4 \times D = 3.000 in$

Center to center spacing (minimum)

 $s_{min} = 3 \times D = 2.250$ in

Center to center spacing (actual)

s = 3.000 in

Row spacing (Table 12.5.1D)

Row spacing

 $s_{row} = ((5 \times I) + (10 \times D)) / 8 = 2.813 in$

Geometry factor C_△ (12.5.1)

End distance (actual)

 $a_q = 3.000 \text{ in}$

End distance (full strength)

ag full = 3.000 in

Geometry factor for end distance Center to center spacing (actual)

s = 3.000 in

Center to center spacing (full strength)

 $s_{full} = 3.000 in$

Geometry factor for spacing

 $C_{\Delta 2} = s / s_{full} = 1.00$

 $C_{\Delta I} = a_q / a_{q_full} = 1.00$

Geometry factor

 $C_{\Delta} = \min(1, C_{\Delta 1}, C_{\Delta 2}) = 1.00$

Adjustment factor

Load duration factor (Table 2.3.2)

 $C_D = 0.90$

Wet service factor (Table 11.3.3)

 $C_{M} = 1.0$

Temperature factor (Table 11.3.4)

 $C_t = 1.0$

Group action factor (eq. 11.3-1)

 $C_{g} = 1.0$

Geometry factor (12.5.1)

 $C_{\Delta} = 1.00$

End grain factor (12.5.2)

 $C_{eq} = 1.0$

Diaphragm factor (12.5.3)

 $C_{di} = 1.0$ $C_{tn} = 1.0$

Toe nail factor (12.5.4)

Total capacity of connection

Capacity of connection

 $Z' = Z \times N_{total} \times C_D \times C_M \times C_\Delta = 3984 \text{ lb}$

P/Z' = 0.628

Design result

PASS - Connection capacity exceeds applied load

GAZEBO COL AND FOOTING DESIGN

POINT 2 STRUCTURAL ENGINEERS INC.

3701 Business Drive, Suite 100, Sacramento, CA 95820 Tel: 916-452-8200 Fax: 916-452-8212

City of Hamilton POINT 2 STRUCTURAL ENGINEERS INC	Gazebo PROJECT CLIENT		2022-047	PROJECT NO.
3701 BUSINESS DRIVE, SUITE 100, SACRAMENTO, CA 95820 PHONE: (916) 452-8200 FAX: (916) 452-8212	ENGINEER	DATE /	/ PAGE	of
MEISMIC DESIGN	grown Agents	29.5		
W= 245(28)(13.5 psf) = 11,151		None and the second sec	281	
65= 0.5144				
Vg = 11,151 × 0.5144 = 5	746	aure person all control design from the same of the country admitted design of the province of the control of t		
(4) CHUTISTEPED COIL	11145			
15/cor = 57364 =	1435	GOL / FHON.		
SiVy = 1.25 (1435) = 1	792 -	CONC ANGHORAGE	E	
CANTILEXEPED COU	MA		Pa	PLL
40E PG		Amende SEE Communication	> 1/4	2
BURRATE			-1145	
SEE PG				
DRIVED PIER		BAFFANTE_	-p	PILLED NC
40E PG		7///	7//P	HP2
	8/22/22		Page 26 of 60	

City of Hamilton	Gazebo	2022-047
POINT 2	PROJECT	PROJECT NO.
STRUCTURAL		
ENGINEERS INC	CLIENT	

ENGINEER

3701 BUSINESS DRIVE, SUITE 100, SACRAMENTO, CA 95820 PHONE: (916) 452-8200 FAX: (916) 452-8212

CHECK HAS POST

DL = 926 11 × 13.5 = 11,151 4 = 2797

U 926 11 20 psf = 4130

DATE

PAGE

Current Date: 8/5/2022 9:26 AM

Units system: English

File name: J:\P22022\2022-047 Hamilton City Park Pavilion\RamElements\column.retx

Geometry data

GLOSSARY

Cb22, Cb33 : Moment gradient coefficients

Cm22, Cm33 : Coefficients applied to bending term in interaction formula : Tapered member section depth at J end of member d0 DJX : Rigid end offset distance measured from J node in axis X DJY : Rigid end offset distance measured from J node in axis Y DJZ : Rigid end offset distance measured from J node in axis Z DKX : Rigid end offset distance measured from K node in axis X DKY : Rigid end offset distance measured from K node in axis Y DKZ : Rigid end offset distance measured from K node in axis Z dL : Tapered member section depth at K end of member

Ig factor : Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members

K22 : Effective length factor about axis 2
K33 : Effective length factor about axis 3

L22 : Member length for calculation of axial capacity
L33 : Member length for calculation of axial capacity

LB pos : Lateral unbraced length of the compression flange in the positive side of local axis 2
LB neg : Lateral unbraced length of the compression flange in the negative side of local axis 2

RX : Rotation about X
RY : Rotation about Y
RZ : Rotation about Z

TO : 1 = Tension only member 0 = Normal member

TX : Translation in X
TY : Translation in Y
TZ : Translation in Z

Nodes

Node	X [in]	Y [in]	Z [in]	Rigid Floor
2	0.00	138.00	0.00	0

Current Date: 8/5/2022 9:27 AM

Units system: English

File name: J:\P22022\2022-047 Hamilton City Park Pavilion\RamElements\column.retx

Load data

GLOSSARY

Comb : Indicates if load condition is a load combination

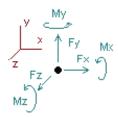
Load Conditions

DL Dead Load No DL LL Live Load No LL EQx Seismic in X No EQ D1 1.4DL Yes D2 1.2DL+1.6LL Yes	Condition	Description	Co	mb.	Category
EQx Seismic in X No EQ D1 1.4DL Yes	DL	Dead Load	1	40 	DL
D1 1.4DL Yes	LL	Live Load	1	1 0	LL
	EQx	Seismic in X	1	1 0	EQ
D2 1.2DL+1.6LL Yes	D1	1.4DL	Υ	es	
	D2	1.2DL+1.6LL	Υ	es	
D3 1.2DL+EQx Yes	D3	1.2DL+EQx	Υ	es	
D4 1.2DL+EQx+LL Yes	D4	1.2DL+EQx+LL	Υ	es	
D5 0.9DL+EQx Yes	D5	0.9DL+EQx	Υ	es	

Load on nodes

Condition	Node	FX [Lb]	FY [Lb]	FZ [Lb]	MX [Kip*ft]	MY [Kip*ft]	MZ [Kip*ft]
DL	2	0.00	-2787.00	0.00	0.00	0.00	0.00
LL	2	0.00	-4130.00	0.00	0.00	0.00	0.00
EQx	2	1500.00	0.00	0.00	0.00	0.00	0.00

8/22/22 Page 29 of 60


Current Date: 8/5/2022 9:28 AM

Units system: English

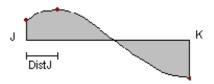
File name: J:\P22022\2022-047 Hamilton City Park Pavilion\RamElements\column.retx

Analysis result

Reactions

Direction of positive forces and moments

		Forces [Lb]			Moments [Kip*ft]				
Node	FX	FY	FZ	MX	MY	MZ			
Condition	DL=Dead Load								
1	0.00000	2787.00000	0.00000	0.00000	0.00000	0.00000			
SUM	0.00000	2787.00000	0.00000	0.00000	0.00000	0.00000			
Condition	LL=Live Load								
1	0.00000	4130.00000	0.00000	0.00000	0.00000	0.00000			
SUM	0.00000	4130.00000	0.00000	0.00000	0.00000	0.00000			
Condition	EQx=Seismic in X								
1	-1500.00000	0.00000	0.00000	0.00000	0.00000	17.25000			
SUM	-1500.00000	0.00000	0.00000	0.00000	0.00000	17.25000			
Condition	D1=1.4DL								
1	0.00000	3901.80000	0.00000	0.00000	0.00000	0.00000			
SUM	0.00000	3901.80000	0.00000	0.00000	0.00000	0.00000			
Condition	D2=1.2DL+1.6LL								
1	0.00000	9952.40000	0.00000	0.00000	0.00000	0.00000			
SUM	0.00000	9952.40000	0.00000	0.00000	0.00000	0.00000			
Condition	D3=1.2DL+EQx								
1	-1500.00000	3344.40000	0.00000	0.00000	0.00000	17.25000			
SUM	-1500.00000	3344.40000	0.00000	0.00000	0.00000	17.25000			
Condition	D4=1.2DL+EQx+LL								
1	-1500.00000	7474.40000	0.00000	0.00000	0.00000	17.25000			
SUM	-1500.00000	7474.40000	0.00000	0.00000	0.00000	17.25000			


Page1

8/22/22 Page 30 of 60

Condition D5=0.9DL+EQx

1	-1500.00000	2508.30000	0.0000	0.00000	0.00000	17.25000
SUM	-1500.00000	2508.30000	0.00000	0.00000	0.00000	17,25000

Points of interest in members

Considered points

CONDITION: DL=Dead Load

			Plane 1-2		Plane 1-3		
Station	Dist to J [in]	Axial [Lb]	Shear V2 [Lb]	M33 [Kip*ft]	Shear V3 [Lb]	M22 [Kip*ft]	Torsion [Kip*ft]
MEMBER	1						
0%	0.000	-2787.000	0.000	0.000	0.000	0.000	0.000
100%	138.000	-2787.000	0.000	0.000	0.000	0.000	0.000

CONDITION : LL=Live Load

				Plane 1-2		Plan		
Station	Dist to J [in]	Axial [Lb]	Shear V2 [Lb]	M33 [Kip*ft]	Shear V3 [Lb]	M22 [Kip*ft]	Torsion [Kip*ft]	
MEMBER	1							
0%	0.000	-4130.000	0.000	0.000	0.000	0.000	0.000	
100%	138.000	-4130.000	0.000	0.000	0.000	0.000	0.000	

CONDITION : EQx=Seismic in X

				Plane 1-2		Plane 1-3	
Station	Dist to J ion [in]	Axial Shea [Lb]	Shear V2 [Lb]	M33 [Kip*ft]	Shear V3 [Lb]	M22 [Kip*ft]	Torsion [Kip*ft]
MEMBER	1						
0%	0.000	0.000	1500.000	-17.250	0.000	0.000	0.000
100%	138.000	0.000	1500.000	0.000	0.000	0.000	0.000

CONDITION: D1=1.4DL

				Plane 1-2	<u> </u>	Plane 1-3	
Station	Dist to J [in]	Axial [Lb]	Shear V2 [Lb]	M33 [Kip*ft]	Shear V3 [Lb]	M22 [Kip*ft]	Torsion [Kip*ft]
MEMBER	1						
0%	0.000	-3901.800	0.000	0.000	0.000	0.000	0.000
100%	138.000	-3901.800	0.000	0.000	0.000	0.000	0.000

CONDITION: D2=1.2DL+1.6LL

				Plane 1-2		Plan	e 1-3	
Station	Dist to J [in]	Axial [Lb]	Shear V2 [Lb]	M33 [Kip*ft]	Shear V3 [Lb]	M22 [Kip*ft]	Torsion [Kip*ft]	
MEMBER	1							
0%	0.000	-9952.400	0.000	0.000	0.000	0.000	0.000	
100%	138.000	-9952.400	0.000	0.000	0.000	0.000	0.000	

CONDITION : D3=1.2DL+EQx

			-	Plane 1-2		Plane 1-3	
Station	Dist to J [in]	Axial [Lb]	Shear V2 [Lb]	M33 [Kip*ft]	Shear V3 [Lb]	M22 [Kip*ft]	Torsion [Kip*ft]
MEMBER	1						
0%	0.000	-3344.400	1500.000	-17.250	0.000	0.000	0.000
100%	138.000	-3344.400	1500.000	0.000	0.000	0.000	0.000

CONDITION : D4=1.2DL+EQx+LL

				Plane 1-2			Plane 1-3		
Station	Dist to J [in]	Axial [Lb]	Shear V2 [Lb]	M33 [Kip*ft]	Shear V3 [Lb]	M22 [Kip*ft]	Torsion [Kip*ft]		
MEMBER	1								
0%	0.000	-7474.400	1500.000	-17.250	0.000	0.000	0.000		
100%	138.000	-7474.400	1500.000	0.000	0.000	0.000	0.000		

CONDITION : D5=0.9DL+EQx

				Plane 1-2			Plane 1-3	
Station	Dist to J [in]	Axial [Lb]	Shear V2 [Lb]	M33 [Kip*ft]	Shear V3 [Lb]	M22 [Kip*ft]	Torsion [Kip*ft]	
MEMBER	1							
0%	0.000	-2508.300	1500.000	-17.250	0.000	0.000	0.000	
100%	138.000	-2508.300	1500.000	0.000	0.000	0.000	0.000	

Current Date: 8/5/2022 9:29 AM

Units system: English

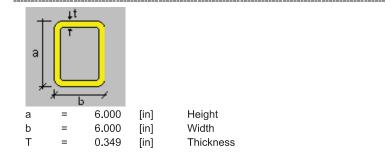
File name: J:\P22022\2022-047 Hamilton City Park Pavilion\RamElements\column.retx

Steel Code Check

Report: Comprehensive

Members: Hot-rolled

Design code: AISC 360-2016 LRFD


Member : 1 Design status : OK

DESIGN WARNINGS

Section information

Section name: HSS_SQR 6X6X3_8 (US)

Dimensions

Properties

Section properties	Unit	Major axis	Minor axis
Gross area of the section. (Ag)	[in2]	7.580	
Moment of Inertia (local axes) (I)	[in4]	39.500	39.500
Moment of Inertia (principal axes) (I')	[in4]	39.500	39.500
Bending constant for moments (principal axis) (J')	[in]	0.000	0.000
Radius of gyration (local axes) (r)	[in]	2.283	2.283
Radius of gyration (principal axes) (r')	[in]	2.283	2.283
Saint-Venant torsion constant. (J)	[in4]	64.600	
Section warping constant. (Cw)	[in6]	0.000	
Distance from centroid to shear center (principal axis) (xo,yo)	[in]	0.000	0.000
Top elastic section modulus of the section (local axis) (Ssup)	[in3]	13.200	13.200
Bottom elastic section modulus of the section (local axis) (Sinf)	[in3]	13.200	13.200
Top elastic section modulus of the section (principal axis) (S'sup)	[in3]	13.200	13.200
Bottom elastic section modulus of the section (principal axis) (S'inf)	[in3]	13.200	13.200
Plastic section modulus (local axis) (Z)	[in3]	15.800	15.800
Plastic section modulus (principal axis) (Z')	[in3]	15.800	15.800
Polar radius of gyration. (ro)	[in]	3.225	
Area for shear (Aw)	[in2]	3.457	3.457
Torsional constant. (C)	[in3]	22.122	

Page1

Material: A500 GrC rectangular

Properties	Unit	Value
Yield stress (Fy):	[Kip/in2]	50.00
Tensile strength (Fu):	[Kip/in2]	62.00
Elasticity Modulus (E):	[Kip/in2]	29000.00
Shear modulus for steel (G):	[Kip/in2]	11153.85

DESIGN CRITERIA

Description	Unit	Value
Length for tension slenderness ratio (L)	[in]	138.00

Distance between member lateral bracing points

Length	(Lb) [in]	
Тор	Bottom	
138.00	138.00	

Laterally unbraced length

Major axis(L33)	Length [in] Minor axis(L22)	Torsional axis(Lt)	Major axis(K33)	Effective length factor Minor axis(K22)	Torsional axis(Kt)
138.00	138.00	138.00	1.0	1.0	1.0

Additional assumptions

Continuous lateral torsional restraint	No
Tension field action	No
Continuous flexural torsional restraint	No
Effective length factor value type	None
Major axis frame type	Sway
Minor axis frame type	Sway

DESIGN CHECKS

AXIAL TENSION DESIGN

Axial tension

 Ratio
 : 0.00

 Capacity
 :341100.00 [Lb]
 Reference
 : CI.D2

 Demand
 : 0.00 [Lb]
 Ctrl Eq.
 : D1 at 0.00%

Intermediate results	Unit	Value	Reference
Factored axial tension capacity(ϕ Pn) Nominal axial tension capacity (Pn)	[Lb]	341100.00	CI.D2
	[Lb]	379000.00	Eq.D2-1

AXIAL COMPRESSION DESIGN

Compression in the major axis 33

Ratio : 0.04

:261116.60 [Lb] Reference : Cl.E3 Capacity Demand : 9952.40 [Lb] Ctrl Eq. : D2 at 0.00%

Intermediate results	Unit	Value	Reference
Section classification			
Unstiffened element classification		Non slender	
Unstiffened element slenderness (λ)		14.19	
Unstiffened element limiting slenderness (λ_r)		33.72	Table 4.1a Case6
Stiffened element classification		Non slender	
Stiffened element slenderness (λ)		14.19	
Stiffened element limiting slenderness (λr)		33.72	Table 4.1a Case6
Factored flexural buckling strength(\$\Pn33\$)	[Lb]	261116.60	CI.E3
Unbraced length (L33)	[in]	138.00	CI.E2
Effective slenderness ((KL/r)33)		60.45	CI.E2
Elastic critical buckling stress (Fe33)	[Kip/in2]	78.32	Eq.E3-4
Effective area of the cross section based on the effective width (A	[in2]	7.58	
Critical stress for flexural buckling (Fcr33)	[Kip/in2]	38.28	Eq.E3-2
Nominal flexural buckling strength (Pn33)	[Lb]	290129.60	Eq.E3-1

Compression in the minor axis 22

Capacity : 0.04
Capacity :261116.60 [Lb]
Demand : 9952.40 Reference : CI.E3 Ctrl Eq. : D2 at 0.00%

Intermediate results	Unit	Value	Reference
Section classification			
Unstiffened element classification		Non slender	
Unstiffened element slenderness (λ)		14.19	
Unstiffened element limiting slenderness (λ_r)		33.72	Table 4.1a Case6
Stiffened element classification		Non slender	
Stiffened element slenderness (λ)		14.19	
Stiffened element limiting slenderness (λ_r)		33.72	Table.4.1a.Case6
Factored flexural buckling strength(\$\Pn22\$)	[Lb]	261116.60	CI.E3
Unbraced length (L22)	[in]	138.00	CI.E2
Effective slenderness ((KL/r)22)		60.45	CI.E2
Elastic critical buckling stress (Fe22)	[Kip/in2]	78.32	Eq.E3-4
Effective area of the cross section based on the effective width (A	[in2]	7.58	
Critical stress for flexural buckling (Fcr22)	[Kip/in2]	38.28	Eq.E3-2
Nominal flexural buckling strength (Pn22)	[Lb]	290129.60	Eq.E3-1

FLEXURAL DESIGN

Bending about major axis, M33

Ratio : 0.29
Capacity : 59.25 [Kip*ft]
Demand : -17.25 [Kip*ft] Reference : CI.F7.1 Ctrl Eq. : D3 at 0.00%

Intermediate results	Unit	Value	Reference
Section classification			
Unstiffened element classification		Compact	
Unstiffened element slenderness (λ)		14.19	
Limiting slenderness for noncompact unstiffened element (λ_{r})		33.72	
Limiting slenderness for compact unstiffened element (λ_p)		26.97	
Stiffened element classification		Compact	
Stiffened element slenderness (λ)		14.19	
Limiting slenderness for noncompact stiffened element (λ_r)		137.27	
Limiting slenderness for compact stiffened element (λ_p)		58.28	
Factored yielding strength(ΦMn)	[Kip*ft]	59.25	CI.F7.1
Yielding (Mn)	[Kip*ft]	65.83	Eq.F7-1

Bending about minor axis, M22

Ratio : 0.00
Capacity : 59.25 [Kip*ft]
Demand : 0.00 [Kip*ft] Reference : CI.F7.1 Ctrl Eq. : D1 at 0.00%

Intermediate results	Unit	Value	Reference
Section classification			
Unstiffened element classification		Compact	
Unstiffened element slenderness (λ)		14.19	
Limiting slenderness for noncompact unstiffened element (λ_r)		33.72	
Limiting slenderness for compact unstiffened element (λ_p)		26.97	
Stiffened element classification		Compact	
Stiffened element slenderness (λ)		14.19	
Limiting slenderness for noncompact stiffened element (λ_r)		137.27	
Limiting slenderness for compact stiffened element (λ_p)		58.28	
Factored yielding strength about a geometric axis(\$\phi\$Mn)	[Kip*ft]	59.25	CI.F7.1
Yielding (Mn)	[Kip*ft]	65.83	Eq.F7-1

DESIGN FOR SHEAR

Shear in major axis 33

Ratio : 0.00 Capacity : 93344,24 [Lb] Demand : 0.00 [Lb] Reference : Cl.G1 Ctrl Eq. : D1 at 0.00%

Intermediate results	Unit	Value	Reference	
<u>Factored shear capacity</u> (φVn)	[Lb]	93344.24	Cl.G1	
Web buckling coefficient (kv)		5.00	CI.G4	
Web buckling coefficient (C _V)		1.00	Eq.G2-9	
Nominal shear strength (Vn)	[Lb]	103715.80	Eq.G4-1	

Shear in minor axis 22

Ratio : 0.02 Capacity : 93344.24 [Lb] Demand : 1500.00 [Lb] Reference : CI.G1 Ctrl Eq. : D3 at 0.00%

Intermediate results	Unit	Value	Reference	
<u>Factored shear capacity</u> (φVn)	[Lb]	93344.24	Cl.G1	
Web buckling coefficient (kv)		5.00	CI.G4	
Web buckling coefficient (Cv)		1.00	Eq.G2-9	
Nominal shear strength (Vn)	[Lb]	103715.80	Eq.G4-1	

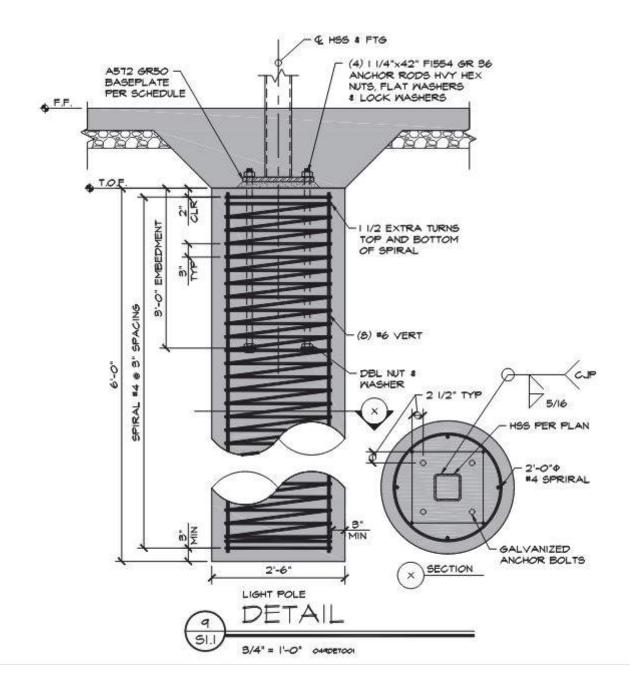
TORSION DESIGN

Torsion

Ratio : 0.00
Capacity : 49.77 [Kip*ft]
Demand : 0.00 [Kip*ft] Reference : CI.H3.1 Ctrl Eq. : D1 at 0.00%

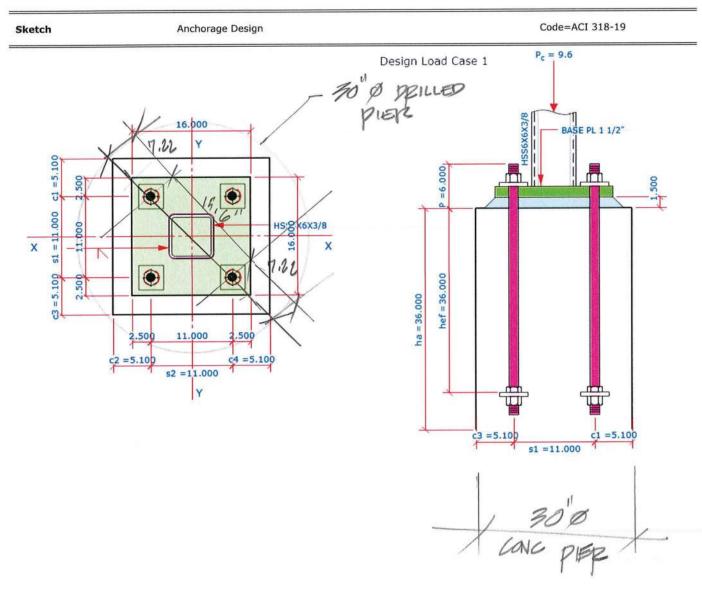
Intermediate results	Unit	Value	Reference	
Factored torsion capacity(ϕT_n)	[Kip*ft]	49.77	CI.H3.1	
Critical torsional buckling stress (Fcr)	[Kip/in2]	30.00	Eq.H3-3	
Nominal torsion capacity (Tn)	[Kip*ft]	55.30	Eq.H3-1	

COMBINED ACTIONS DESIGN



Combined flexure and axial

Ratio


: 0.31 : D4 at Ctrl Eq. D4 at 0.00% : Eq.H1-1b Reference

Intermediate results	Unit	Value	Reference	
Interaction of flexure and axial force		0.31	Eq.H1-1b	
Available flexural strength about strong axis (Mc33)	[Kip*ft]	59.25	CI.H1.1	
Available flexural strength about weak axis (Mc22)	[Kip*ft]	59.25	CI.H1.1	
Available axial strength (Pc)	[Lb]	261116.60	CI.H1.1	

Column Baseplate

Result Summary -	Overall Ar	nchorage Design	Code	=ACI 318-19
Result Summary	- Overall geome	etries & weld limitations = PASS lim	nit states max ratio = 0.86 PASS	
Anchor Bolt - LC 1	$P + V_x + M_y$	geometries & weld limitations = PASS	limit states max ratio = 0.37	PASS
Base Plate - LC 1	P + M _x	geometries & weld limitations = PASS	limit states max ratio = 0.86	PASS
Base Plate - LC 1	P + M _v	geometries & weld limitations = PASS	limit states max ratio = 0.86	PASS

Anchor Forces Calculation

Anchor Tensile Force Calculation

User Input

Anchor edge distance

$$c_{1u} = 5.100$$
 [in]

$$c_{2u} = 5.100$$

$$c_{3u} = 5.100$$
 [in]

$$c_{4u} = 5.100$$
 [in]

[in]

Anchor out-out spacing

$$s_{1u} = 11.000$$
 [in]

$$s_{2u} = 11.000$$
 [in]

Anchor embedment depth

$$h_{ef} = 36.000$$
 [in]

Design Load - Load Case 1

Axial force

Axial P = 9.60

[kips]

in compression

Shear forces

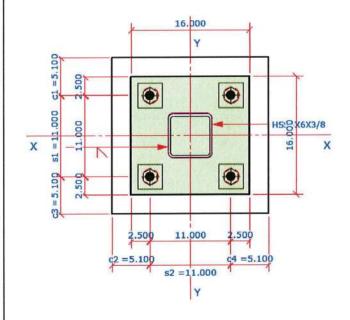
 $V_{y} = 0.00$

[kips]

 $V_x = 1.90$

[kips]

Moment forces


 $M_{x} = 0.00$

[kip-ft]

 $M_y = 21.60$

[kip-ft]

Anchor Layout Plan

Load Case 1 - Check on P + Vx + Mv

Anchor edge distance

 $c_1 = 5.100$

 $c_2 = 5.100$ [in]

 $c_3 = 5.100$

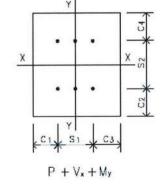
[in] [in]

[kips]

[kip-ft]

c₄ = 5.100 [in]

Anchor out-out spacing


 $s_1 = 11.000$ [in]

 $s_2 = 11.000$ [in]

Anchor group load

 $P_u = 9.60$ $M_u = 21.60$ $V_{u} = 1.90$

= 1.90 [kips]

Max Allowed Concrete Pressure

Column sect HSS6X6X3/8

d = 6.000 [in]

 $b_f = 6.000$ [in]

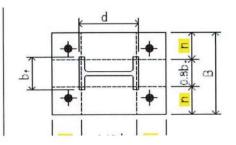
Base plate width & depth

B = 16.000 [in]

N = 16.000 [in]

Pedestal width & depth

 $b_c = 21.200$ [in]


 $d_c = 21.200$ [in]

Base plate area Pedestal area $A_1 = B \times N$

 $= 256.00 [in^2]$

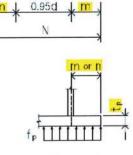
 $A_2 = b_c \times d_c$

 $= 449.44 [in^2]$

AISC Design Guide 1 - 3.1.2 on Page 15

$$k = \min (\sqrt{A_2/A_1}, 2)$$

ACI 318-19 Table 14.5.6.1


$$k = \min (\sqrt{A_2/A_1}, 2)$$

= 1.325

Base plate cantilever dimension

$$m = (N - 0.95 d)/2$$

$$n = (B - 0.95 b_f) / 2$$

ACI 318-19

Concrete strength & strength

$$f_c = 3.0$$

$$\phi_c = 0.65$$

$$f_{p(max)} = \phi_c k 0.85 f_c$$

AISC Design Guide 1

Pedestal max allowed bearing stress

$$q_{\text{max}} = \phi_c \kappa 0.85 T_c$$

$$q_{\text{max}} = f_{p(\text{max})} \times B$$

Factored forces on base plate

$$P_u = 9.60$$

$$M_u = 21.60$$
 [kip-ft]

[in]

Eccentricity

$$e = M_u / P_u$$

Critical eccentricity

$$e_{crit} = N/2 - P_u/(2 q_{max})$$

$$= 7.863$$

= 27.000 [in]

when $e>e_{\, crit}\,$, $\,$ large moment case applied

Step 3 on Page 27

To achieve forces equilibrium in base plate to point A as shown in sketch on the bottom right, the actual concrete bearing stress f_p can be any value $f_p \le f_{p(max)} = 2.196$ ksi

Pedestal actual bearing stress used

$$f_p =$$

$$q_{max} = f_p \times B$$

Anchor Tensile Force Calc - Group Anchor Subject to Moment

Design Basis and Assumptions

- 1. Assume base plate is rigid and anchor tensile forces are elastic linearly distributed as shown on the right.
- The concrete bearing stress is assumed to be uniformly distributed as per AISC Design Guide 1 section 3.3.1 User can select the option of base plate thickness $t_p \ge (max \text{ of base plate overhangs m or n}) / 4$ in Anchor Bolt - Config & Setting to ensure that base plate has adequate rigidity to match above assumptions.

Anchor Bolt Spacings

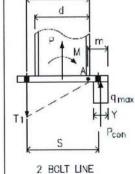
Anchor bolt pattern

$$=4B$$

Anchor bolt out-out spacing &

column depth

$$s = 11.000$$
 [in]


$$d = 6.000$$
 [in]

Loads on Anchor Group

Anchor group load

$$P_{u} = 9.60$$

$$M_{ij} = 21.60$$
 [kip-ft]

dmi

Along Anchor Bolt Line - Single Anchor Tensile Ti & No of Anchor Bolt ni

Anchor bolt line - moment arm

$$d_{m1} = 8.500$$
 [in]

 $T_u = n_1 T_1$

$$T_1 = 6.91$$

$$n_1 = 2$$

Sum of anchors tensile force No of anchors in anchor group

Bolt line 1 - single anchor T₁

resisting tension

$$n_t = n_1$$

Resistance moment by tensile anchors

$$M_{ra} = n_1 T_1 d_{m1}$$

= 13.83 [kips]

[kip-ft]

Moment by Concrete Pressure Reaction

Take the moment of concrtete pressure resultant P_{con} to column flange/base plate intersect point A as shown on above sketch on the right

Max allowed concrete pressure	q_{max} = from above calculation	= 35.14	[kip/in]
Base plate cantilever length	m = from above calculation	= 5.150	[in]
Concrete pressure block length	Y =	= 0.667	[in]
Concrete pressure stress resultant	$P_{con} = q_{max} Y$	= 23.44	[kips]
Resistance moment by concrete reaction	$M_{rc} = P_{con} x (m - 0.5Y)$	= 9.41	[kip-ft]

concrete pressure block length Y shown above make the base plate achieving force equilibrium

Verify Vertical Force Equilibrium

Tensile anchors reaction on base plate - downward	$P_{ar} = n_1 T_1$	= 13.83	[kips]
Base plate compressive load- downward	$P_u = from user load input$	= 9,60	[kips]
Sum of downward forces on base plate	$P_{dn} = P_{ar} + P_{u}$	= 23.43	[kips]
Concrete pressure reaction on base plate - upward	$P_{con} = q_{max} Y$	= 23.44	[kips]
Sum of upward forces on base plate	$P_{up} = P_{con}$	= 23.44	[kips]

Conclusion: the vertical forces equilibrium is achieved

Verify Overturn/Resistance Moment Equilibrium

Take moment to column edge point A as rotating point as shown on sketch above

Take moment to column edge point A a	s rotating point as snown on sketch above	•	
Resistance moment by tensile anchors downward reaction forces	$M_{ra} = n_1 T_1 d_{m1}$	= 9.79	[kip-ft]
Resistance moment by concrete pressure reaction force	$M_{rc} = P_{con} x (m - 0.5Y)$	= 9.41	[kip-ft]
Sum of resistance moment	$= M_{ra} + M_{rc}$	= 19.20	[kip-ft]
Load on base plate	P _u = 9.60 [kips]	$M_u = 21.60$	[kip-ft]
Column sect HSS6X6X3/8	d = 6.000 [in]		
Sum of moments from base plate loads taken to point A	$= M_u - P_u \times 0.5 d$	= 19.20	[kip-ft]

Conclusion: the summation of moments taken about point A equals to zero

Anchor Bolt - Load Case 1 P + V_x + M_y

 $P_c = 9.6 \text{ kip}$ $V_x = 1.9 \text{ kip}$

 $M_y = 21.6 \text{ kip-ft}$

Code=ACI 318-19

Result Summary

geometries & weld limitations = PASS

limit states max ratio = 0.37

PASS

Min Anchor Dimensions Check Per PIP STE05121 - Optional

PASS

Min Anchor Dimensions Check

Check min anchor dimensions as per PIP STE05121 Application of ASCE Anchorage Design for Petrochemical Facilities - 2018 Table 1 as shown below.

This check is NOT a code requirement. User can turn this check On/Off by changing setting at Anchor Bolt --> Anchor Bolt - Config & Setting --> Check min anchor spacing and edge distance as per PIP STE05121 Table 1

Anchor Rod Inputs

Anchor rod grade and dia

grade = F1554 Gr36

 $d_a = 1^{1}/_{4}$ [in]

Min Anchor Edge Distance

Anchor edge distance

 $c_1 = 5.100$ [in] $c_3 = 5.100$ [in]

 $c_2 = 5.100$

 $c_4 = 5.100$

Min anchor edge distance required

c_{min} = from PIP STE05121 Table 1 below

= 5.000

PIP STE05121 Table 1

Min anchor edge distance

 $c = min(c_1, c_2, c_3, c_4)$

= 5.100[in]

 $\geq c_{min}$ OK

[in]

[in]

[in]

Min Anchor Spacing

Min anchor spacing required

 s_{min} = from PIP STE05121 Table 1 below

= **5.000** [in]

PIP STE05121 Table 1

Anchor bolt pattern

= from user input

=4B

Min anchor spacing

s = from user input

= 11.000 [in] ≥ s_{min} OK

Min Anchor Embedment Depth

Min anchor embedment required

h min = from PIP STE05121 Table 1 below

= **15.000** [in]

PIP STE05121 Table 1

Min anchor embedment depth

h_{ef} = from user input

= 36.000 [in]

≥ h_{min} OK

Table 1 from PIP STE05121 Application of ASCE Anchorage Design for Petrochemical Facilities - 2018

PIP STE05121

Application of ASCE Anchorage Design for Petrochemical Facilities

EDITORIAL REVISION

January 2018

Table 1 - Minimum Anchor Dimensions - U.S. Customary Units

(See Figure 1 for dimension locations)

ER	ONAL	ь	YPE 2	4 0 K	ASCE ANCHORAGE DESIGN REPORT MINIMUM DIMENSIONS (Note 1)		MINIMUM DIMENSIONS (Note 1)			
OD DIAMETER	NCHOR ROD ON (Note 3)	HEX HEAD! NU	ANCHOR T	BOTTOM	het		ISTANCE c ₂ Note 2)	SPAC -ING	SLEEVES (See Note 1 (d))	
ANCHOR ROD	EFFECTIVE CF AREA OF AI TENSIC	HEAVY HE	WITH NO	WITH AP (Note 4)	12d _a	A307/ A36 F1554 GRADE 36	HIGH- STRENGTH (> 36 ksi) OR TORQUED ANCHORS	4d _a	SHELL SIZE	h'e

da	A _{se,N}	Wh	TB1	TB2		4da ≥ 4.5"	6da≥4.5"		Diam d _s	Height h _s	6da ≥ 6"
in.	in ²	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.
5/8	0.226	1.25	1.25		7.5	4.5	4.5	2.5	2	7	6
3/4	0.334	1.44	1.25	2.25	9.0	4.5	4.5	3.0	2	7	6
7/8	0.462	1.69	1.50	2.50	10.5	4.5	5.3	3.5	2	7	6
1	0.606	1.88	1.75	3.00	12.0	4.5	6.0	4.0	3	10	6
1-1/4	0.969	2.31	2.00	3.50	15.0	5.0	7.5	5.0			-
1-1/2	1.405	2.75	2.25	4.00	18.0	6.0	9.0	6.0			
1-3/4	1.900	3.19	2.50	4.75	21.0	7.0	10.5	7.0			
2	2.500	3.63	2.75	5.25	24.0	8.0	12.0	8.0			
2-1/4	3.250	4.06	3.00	5.75	27.0	9.0	13.5	9.0	_	_	-
2-1/2	4.000	4.50	3.50	6.50	30.0	10.0	15.0	10.0			
2-3/4	4.930	4.94	3.75	7.00	33.0	11.0	16.5	11.0			
3	5.970	5.31	4.00	7.75	36.0	12.0	18.0	12.0			

NOTES:

- 1. If sleeves are used, the following dimensional modifications apply:
 - (a) Embedment should be the greater of 12da or (hs + h'e)
 - (b) Edge distance should be increased by $0.5(d_s d_a)$ (c) Spacing should be increased by $(d_s d_a)$

 - Spacing should be increased by (d_s d_s)

 Partial length sleeves are not recommended for anchors greater than 1 in. See ASCE Anchorage Design Report, Section 3.2.3.1.

Minimum Anchor Dimensions Check

Min Anchor Dimensions Check

When anchor reinforcement or supplementary reinforcement is provided, the check on min edge distance is not required. Only min anchor spacing is checked as per ACI 318-19 Table 17.9.2(a)

ACI 318-19 17.9.1

PASS

ACI 318-19 17.9.1

17.9—Edge distances, spacings, and thicknesses to preclude splitting failure

17.9.1 Minimum spacings and edge distances for anchors and minimum thicknesses of members shall conform to this section, unless supplementary reinforcement is provided to control splitting. Lesser values from product-specific tests

Anchor Rod Inputs

Anchor rod grade and dia

grade = F1554 Gr36

 $d_a = 1^{1}/_{4}$ [in]

Min Anchor Spacing

Min anchor spacing required

 $s_{min} = 4 \times d_a$ for Not Torqued case

= **5.000** [in]

ACI 318-19 Table

17.9.2(a)

Anchor bolt pattern Min anchor spacing = from user input s = from user input = 4B

= **11.000** [in]

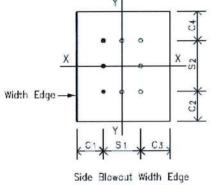
≥ s_{min}

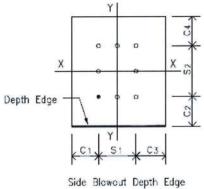
OK

ACI 318-19 Table 17.9.2(a)

Table 17.9.2(a)—Minimum spacing and edge distance requirements

		And	hor type	
	Cast-in an	chors	Post-installed	Post- installed
Spacing parameter	Not torqued	Torqued	expansion and undercut anchors	screw anchors
Minimum anchor spacing	4d _a	6d _a	6d _a	Greater of 0.6h _{ef} and 6d _a
Minimun edge distance	Specified cover requirements for reinforcement according to 20.5.1.3	$6d_a$	Greatest of (a). (a) Specific requirement 20.5. (b) Twice the aggregal (c) Minimum e requirements: ACI 355.2 or 3: 17.9.2(b) wh information	ed cover ents for according to 1.3 maximum te size dge distance according to 55.4, or Table en product


Anchor Rod Tensile Resistance		ratio = 6.9 / 42.2	= 0.16	PASS
Anchor rod effective section area	$A_{se} = 0.97$ [in ²]	f _{uta} = 58.0	[ksi]	
Anchor rod steel strength in tension	$N_{sa} = A_{se} f_{uta}$	= 56.20	[kips]	ACI 318-19 17.6.1.2
Max Single Anchor Tensile Force	-			
경우 프로마스 경기는 이번 이루를 내는 이렇게 되었다. [이번 경기 경기 기계 경기 기계				
ANNA PERIOD OF THE PARKET PARKET PARKET AND THE PROPERTY OF THE PARKET.	tion above for the detail calculation on	how to ge the max sing	e anchor	
Refer to Anchor Forces Calculation sectors tensile force as shwon below	T = from Anchor Forces Calcul		e anchor [kips]	
Refer to Anchor Forces Calculation sectors tensile force as shwon below Max <u>single</u> anchor tensile force				ACI 318-19 17.5.3(a)
Refer to Anchor Forces Calculation sect	T = from Anchor Forces Calcul		[kips]	ACI 318-19 17.5.3(a)


Strength reduction factor	$\phi_{ts} = 0.75$			ACI 318-19 17.5.3(a)
	$\phi_{ts} N_{sa} = 0.75 \times 56.20$	= 42.1	. 5 [kips]	
	ratio = 0.16	> T	ОК	
Anchor Reinforcement Tensile	Breakout Resistance	ratio = 13.8 / 111.6	= 0.12	PASS
Concrete & rebar strength	$f_c = 3.0$ [ksi]	$f_y = 60.0$	[ksi]	
Ver rebar no & area	bar no = #5	$A_s = 0.31$	[in ²]	
	$d_b = \frac{5}{8}"$			
	$\Psi_e = 1.0$	$\Psi_r = 1.0$		ACI 318-19 Table 25.4.3.2
	$\Psi_o = 1.0$	$\Psi_c = 0.80$		
Hook rebar development length	$I_{dh} = \max(\frac{f_y \Psi_e \Psi_r \Psi}{55 \lambda }$	$\frac{V_0 \Psi_c}{f_c} d^{1.5}_b$, $8d_b$, 6") = 7.87	'3 [in]	ACI 318-19 25.4.3.1
When anchor reinforcement is used, failure breakout line shall meet the Anchor embedment depth			c = 2 in	< 0.5 her 8 in
Avg ver, bar center to anchor rod center distance	d _{ar} = from user input	= 4.000 [in]	<u>-</u>	
Min rebar development length required	I _{min} = max(8d _b , 6")	ACI 318-19 25.4.3.1 = 6.000 [in]		35°
Actual rebar development length	$I_a = h_{ef} - top cover$ ratio = 0.19	(2") - d _{ar} tan35 = 31. 3 > I _{min}	. 99 [in] OK	ACI 318-19 25.4.3.1
Anchor group tensile load	N _u = from Anchor Fo	rces Calculation above = 13.8	33 [kips]	

Actual rebar development length	$I_a = h_{ef}$ - top cover (2") - d_{ar} tan 35 ratio = 0.19	= 31.199 > I _{min}	[in] OK	ACI 318-19 25.4.3.1
Anchor group tensile load	$ N_u$ = from Anchor Forces Calculation above	= 13.83	[kips]	
No of ver rebar effective to resist anchor tension	n _v = from user input	= 8.0		
Rebar resistance factor	$\phi_s = 0.75$			ACI 318-19 17.5.3
Anchor reinft breakout resistance	$\phi N_n = \phi_s n_v A_s f_y$	= 111.60	[kips]	ACI 318-19 17.5.2.1 (a)
	ratio = 0.12	> N _u	OK	

Anchor Pullout Resistance		ratio = $6.9 / 37.6$	= 0.25	PASS
Anchor head net bearing area & conc strength	$A_{brg} = 2.24$ [in ²]	$f_c = 3.0$	[ksi]	
Single bolt pullout resistance	$N_p = 8 A_{brg} f_c$	= 53.69	[kips]	ACI 318-19 17.6.3.2.2a
Pullout cracking factor	$\Psi_{cP} = for \; cracked \; concrete$	= 1.00		ACI 318-19 17.6.3.3.1(b
May Single Anches Tonsile Force				
	ction above for the detail calculation o	n how to ge the max single	anchor	
Refer to Anchor Forces Calculation sec tensile force as shwon below				
Max Single Anchor Tensile Force Refer to Anchor Forces Calculation sec tensile force as shwon below Max single anchor tensile force	tion above for the detail calculation o T = from Anchor Forces Calc		e anchor	
Refer to Anchor Forces Calculation sectensile force as shwon below Max <u>single</u> anchor tensile force	T = from Anchor Forces Cald			ACI 318-19 17.5.3(c)
Refer to Anchor Forces Calculation sec tensile force as shwon below	T = from Anchor Forces Cald	culation above = 6.91		ACI 318-19 17.5.3(c)
Refer to Anchor Forces Calculation sectensile force as shwon below Max <u>single</u> anchor tensile force	T = from Anchor Forces Calc $\varphi_{tc} = 0.70 \qquad \text{pullout streng}$	culation above = 6.91 th is always Condition B	[kips]	ACI 318-19 17.5.3(c) ACI 318-19 17.10.5.4(c)

	ratio = 0.25		> T	ок	
Anchor Side Blowout Resistance Anchor Inputs			ratio = 6.9 / 18.8	= 0.37	PASS
Anchor edge distance	c ₁ = 5.100	[in]	$c_2 = 5.100$	[in]	
	$c_3 = 5.100$	[in]	$c_4 = 5.100$	[in]	
Anchor out-out spacing	s ₁ = 11.000	[in]	$s_2 = 11.000$	[in]	
X	-	X	Y X X		

Side Edges Along Y-Y Axis - Width Edges

1907				
Anchor edge distance in X direction	$c_{a1} = min(c_1, c_3)$	= 5.100	[in]	
Anchor embedment depth	$h_{ef} = from user input$	= 36.000	[in]	
Side blowout check is required on this edge or not	= check if $h_{ef} > 2.5 c_{a1}$	= True		ACI 318-19 17.6.4.1
	Side blowout check is required			ACI 318-19 17.6.4.1
Anchor out-out distance edges along Y direction	s ₂ = from user input	= 11.000	[in]	
Anchor number along Y direction	$n_w = from user input$	= 2		
Anchor head net bearing area & conc strength	$A_{brg} = 2.24$ [in ²]	$f_c = 3.0$	[ksi]	
Lightweight conc modification factor	$\lambda = 1.0$			ACI 318-19 17.2.4.1
Single anchor side blowout capacity	$N_{sb} = 160 c_{a1} \sqrt{A_{brg}} \lambda \sqrt{f_c}$	= 66.85	[kips]	ACI 318-19 17.6.4.1
For <u>multiple</u> anchors along the edge, che	eck if the anchor spacing is close enough so group	o that side		ACI 318-19 17.6.4.2

Anchor spacing along Y-Y edges

$$s_b = s_2 / (n_w - 1)$$

City of Hamilton	Gazebo		2022-047
Multiple tensile anchors space close and work as group or not	= check if $s_b < 6 c_{a1}$	= True	ACI 318-19 17.6.4.2
Multiple anchors group factor	$= 1 + \frac{s_2}{6c_{a1}}$	= 1.36	ACI 318-19 17.6.4.2
Group anchor side blowout capacity	$N_{sbg} = (1 + \frac{s_2}{6c_{a1}}) N_{sb}$	= 90.88 [kips]	
Refer to Anchor Forces Calculation secti	on above for the detail calculation on ho	w to ge the max single anchor	
Max <u>single</u> anchor tensile force & no of anchors along blowout edge	T ₁ = 6.91 [kips]	n ₁ = 2	
Tensile force - anchors along potential blowout edge	$T_w = n_1 T_1$	= 13.83 [kips]	
Strength reduction factor	$\phi_{tc} = 0.75$ supplementary rei	inft present	ACI 318-19 17.5.3(b)
	$\phi_{tc} N_{sbg} = 0.75 \times 90.88$	= 68.16 [kips]	
Seismic design strength reduction	= x 0.75 applicable	= 51.12 [kips]	ACI 318-19 17.10.5.4(d)
	ratio = 0.27	> T _w OK	
When there are tensile anchors in the g anchors capacity above to work out and	roup which are not located on blowout ed hor group tensile capacity	dge, we need to use edge	
Group anchor no & no of anchor along blowout edge	n _t = 2	n _{bw} = 2	
Group anchor tensile side blowout capacity	$= 51.12 \frac{n_t}{n_{bw}}$	= 51.12 [kips]	
Side Edges Along X-X Axis - Depth	Edges		
Anchor edge distance in Y direction	$c_{a2} = min(c_2, c_4)$	= 5.100 [in]	
Anchor embedment depth	h _{ef} = from user input	= 36.000 [in]	
Side blowout check is required on this edge or not	= check if h_{ef} > 2.5 c_{a2}	= True	ACI 318-19 17.6.4.1
Recommended	Side blowout check is require	ed	ACI 318-19 17.6.4.1
Anchor head net bearing area & conc strength	$A_{brg} = 2.24 \qquad [in^2]$	$f_c = 3.0$ [ksi]	
Lightweight conc modification factor	$\lambda = 1.0$		ACI 318-19 17.2.4.1
<u>Single</u> anchor side blowout capacity	$N_{sb} = 160 c_{a2} \sqrt{A_{brg}} \lambda \sqrt{f_c}$	= 66.85 [kips]	ACI 318-19 17.6.4.1
When only <u>single</u> anchor in a row of mu this <u>single</u> anchor has an increased edg	Itiple anchors mobilizes tensile for side b	lowout check ,	
Anchor edge distance - after c ₃ been adjusted	$c_1 = 5.100 [in]$	c ₃ = 16.100 [in]	
	small, when c_1 or $c_3 \le 3c_{a2}$, anchor N_{st}	sball be multiplied	ACI 318-19 17.6.4.1.1
Single anchor side blowout capacity	N _{sb} = from above calculation	= 66.85 [kips]	
Anchor edge distance in Y direction	$c_{a2} = min(c_2, c_4)$	= 5.100 [in]	
Check If c ₁ ≤ 3c _{a2}			
Anchor edge distance	$c_1 = from user input$	= 5,100 [in]	
Edge anchor on c ₁ edge	= check if $c_1 \le 3 c_{a2}$	= True	ACI 318-19 17.6.4.1.1
Edge anchor side blowout capacity	$N_{sb1} = N_{sb} (1 + c_1/c_{a2}) / 4$	= 33.42 [kips]	
	where $1.0 \le c_1 / c_{a2} \le 3.0$		ACI 318-19 17.6.4.1.1

Check If c₃ ≤ 3c_{a2}

A _ - L _ - - - J = - - J = - - - -

Anchor edge distance

Edge anchor on c3 edge

$$c_3 = \text{rrom user input}$$

= 10.100 [IN]

ACI 318-19 17.6.4.1.1

Edge anchor side blowout capacity

$$= \text{check if } c_3 \le 3 c_{a2}$$

$$N_{sb3} = N_{sb}$$

= check if $c_3 \le 3 c_{a2}$

= False = 66.85[kips]

The anchor tensile force is caused by moment, anchors along the outermost bolt line has the max tensile load T₁ Side blowout along depth edge is checked against single corner anchor only which mobilizes max tensile load T1, so number of anchor along potential side blowout edge below is set as n = 1

Total number of anchors along potential side blowout edge

= 1

Single anchor side blowout capacity

$$N_{sb} = min (N_{sb1}, N_{sb3})$$

Refer to Anchor Forces Calculation section above for the detail calculation on how to ge the max single anchor tensile force as shwon below

Tensile force - anchor along potential blowout edge

$$T_d = T_1$$
 from Anchor Forces Calculation

[kips]

[kips]

OK

Strength reduction factor

$$\phi_{tc} = 0.75$$

 $\phi_{tc} N_{sbq} = 0.75 \times 33.42$

supplementary reinft present

Seismic design strength reduction

= 25.07= 18.80

ratio = 0.37

$$> T_d$$

When there are tensile anchors in the group which are not located on blowout edge, we need to use edge anchors capacity above to work out anchor group tensile capacity

Group anchor no & no of anchor along blowout edge

$$n_t = 3$$

$$n_{bd} = 1$$

Group anchor tensile side blowout capacity

$$= 18.80 \frac{n_t}{n_{bd}}$$

Corner Single Anchor Side Blowout

Check on corner single anchor side blowout capacity considering the corner effect factor as per ACI 318-19 17.6.4.1.1

ACI 318-19 17.6.4.1.1

Anchor edge distance

$$c_{a1} = min(c_1, c_3)$$

$$= 5.100$$
 [in]

$$c_{a2} = \min(c_2, c_4)$$

$$= 5.100$$
 [in]

Consider corner effect or not

= check if
$$c_{a2} < 3 c_{a1}$$

ACI 318-19 17.6.4.1.1

Single anchor side blowout capacity

$$N_{sb1} = (1 + \frac{c_{a2}}{c_{a1}})/4 \times N_{sb}$$

Refer to Anchor Forces Calculation section above for the detail calculation on how to ge the max single anchor tensile force as shwon below

Max single anchor tensile force

$$T_1$$
 = from user load input

Strength reduction factor

$$\phi_{tc} = 0.75$$

supplementary reinft present

$$\phi_{tc} N_{sb} = 0.75 \times 33.42$$

Seismic design strength reduction

$$ratio = 0.37$$

Anchor Group Governing Tensile Resistance

Anchor group governing tensile resistance is the minimum value of the resistance values in the following limit states

No of anchors in anchor group

resisting tension

 n_t = from Anchor Forces Calculation above = 3

Anchor rod tensile resistance $n_t \phi N_{sa} = 2 \times 42.15$

= 84.30 [kips]

THE WE WE THE THE PROPERTY OF THE PROPERTY OF

127 7.751

אואן טכייינ

Anchor concrete breakout resistance

 $\phi N_n =$ from anchor reinft tensile breakout

111 60 [kips

[kips]

= 0.05

resistance calc above

= 111.60 [kips]

Anchor pullout resistance

 $n_t \phi N_{pm} = 2 \times 28.19$

= 56.37

Anchor side blowout resistance

 ϕ N_{sbq} = from anchor side blowout calc above

= 37.60 [kips]

Anchor group governing tensile

 $\phi N_n = minimum of above values$

= **37.60** [kips]

PASS

Anchor Rod Shear Resistance

V_u = from user load input

= 1.90

Anchor rod effective section area

Anchor rod steel strength in shear

Reduction due to built-up grout pad

Shear load on anchor group

 $A_{se} = 0.97$

[in²]

 $f_{\text{uta}} = 58.0$ = 2

ratio = 1.9 / 35.1

ratio = 1.3 / 16.8

[in]

[kips]

[ksi]

[kips]

[kips]

[kips]

[kips]

No of anchors in the group resisting shear

resistance

 n_s = from user input $V_{sa} = n_s 0.6 A_{se} f_{uta}$

= 67.44

ACI 318-19 17.7.1.2b

Strength reduction factor

 $\phi_{vs} = 0.65$

= 43.84

ACI 318-19 17.5.3(a)

 $\phi_{vs}V_{sa} =$

= x 0.80 applicable

= 35.07

ACI 318-19 17.7.1.2.1

ratio = 0.05

 $> V_u$

OK

= 0.08 PASS

Concrete Shear Breakout Resistance

Strut-and-Tie model is used to analyze the shear transfer and to design the required tie reinforcement

ine required the remainder

ACI 318-19 Table 21.2.1 (g)

STM strength reduction factor

Anchor edge distance

 $\phi_{st} = 0.75$ $c_1 = 5.100$

[in]

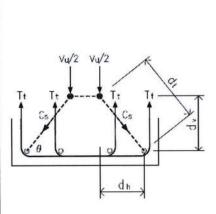
 $c_2 = 5.100$

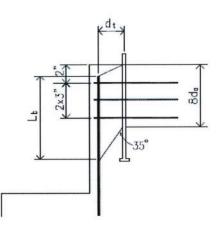
 $c_3 = 5.100$ [in]

c₄ = 5.100 [in]

Anchor dia & embedment depth

Shear load on anchor group


 $d_a = 1.250$ [in]


V_u = from user load input

 $h_{ef} = 36.000$ [in]

= 1.90

Refer to sketch above for the terms and notations used below

City of Hamilton	Gazebo			2022-047
Strut-and-Tie model geometry	$d_v = c_1 - 2.75'' (70mm)$	= 2.350	[in]	
	$d_h = min(c_2, c_4) - 2.75" (70mm)$	= 2.350	[in]	
	$\theta = \tan^{-1} (d_v/d_h)$	= 45.0	[°]	
	$d_t = \sqrt{d_v^2 + d_h^2}$	= 3.323	[in]	
Strut compression force	$C_s = \frac{0.5 \text{ V}_u}{\sin \theta}$	= 1.34	[kips]	
Strut Bearing Strength				
No of anchors in the group resisting shear	$n_s = from user input$	= 2		
Concrete & rebar strength	$f_c = 3.0$ [ksi]	$f_y = 60.0$	[ksi]	
Strut compressive strength	$f_{ce} = 0.85 f_c$	= 2.6	[ksi]	ACI 318-19 23.4.3
Bearing of Anchor Bolt				
Anchor bearing length	$I_e = min(8d_a, h_{ef})$	= 10.000	[in]	ACI 318-19 17.7.2.2.1
Anchor bearing area	$A_{brg} = I_e \times d_a$	= 12.50	[in ²]	
Anchor bearing resistance	$C_r = n_s \times \phi_{st} \times f_{ce} \times A_{brg}$	= 47.81	[kips]	
	ratio = 0.04	$> V_u$	ОК	
Bearing of Ver Reinforcement Rebar				
Anchor & ver rebar dia	$d_a = 1.250$ [in]	$d_b = 0.626$	[in]	
Anchor bearing area	$A_{brg} = [I_e + 1.5d_t - 0.5(d_a + d_b)] \times d_b$	= 8.79	[in ²]	
Anchor bearing resistance	$C_r = \phi_{st} \times f_{ce} \times A_{brg}$	= 16.82	[kips]	
	ratio = 0.08	> C _s	ОК	
Tie Reinforcement				
* For tie reinforcement, only the top mos	st 2 or 3 layers of ties (2" from TOC and 2x3" a	fter) are effecti	ve	
* Assume 100% of hor. tie bars can deve	elop full yield strength as per user's choice in A	nchor Reinforce	ment inpu	ut
Total number of hor tie bar	$n = n_{leg} (leg) \times n_{lay} (layer)$	= 4		
Rebar resistance factor	$\phi_s = 0.75$			17.5.3 (a)
Hor rebar area & strength	$A_s = 0.20$ [in ²]	$f_{yh} = 60.0$	[ksi]	

Single tie bar tension resistance

$$T_r = \phi_s f_{yh} A_s$$

= 9.00[kips]

Total tie bar tension resistance

OK

OK

$$\phi_s V_{nb} = n \times T_r$$

= 35.99 [kips] 17.5.2.1 (b)

ratio = **0.05**

 $> V_u$

Concrete Pryout Shear Resistance

PASS

The pryout failure is only critical for short and stiff anchors. It is reasonable to assume that for general cast-in place headed anchors with $h_{ef} \ge 12d_a$, the pryout failure will not govern

Anchor dia & embedment depth

$$d_a = 1.250$$
 [in]

$$h_{ef} = 36.000$$
 [in]

 $12d_a = 12 \times 1.250$

= **15.000** [in]

Anchor embedment depth

$$h_{ef}$$
 = from user input

Anchor Group Governing Shear Re	esistance		
Anchor group governing shear resistance the following limit states	e is the minimum value of the resistance values in		
Anchor rod shear resistance	φ V $_{sa}\!$ = from anchor rod shear calc above	= 35.07	[kips]
Anchor reinft shear breakout resistance	ϕ V _{nb} = from anchor reinft shear breakout calc	= 35.99	[kips]
Anchor conc shear pryout resistance	φ V $_{cpg}$ = not govern when h $_{ef}$ \geq 12d $_{a}$	= N/A	
Anchor group governing shear resistance	$\phi V_n =$ minimum of above values	= 35.07	[kips]

Anchor Tension and Shear Interaction	ratio = 0	0.00 / 1.20	= 0.00	PASS
Anchor group tensile load	N _u = from Anchor Forces Calculation abo	ve = 13.83	[kips]	
Anchor group shear load	$V_u =$ from user load input	= 1.90	[kips]	
Anchor group governing tensile resistance	ϕ N _n = from calc in above section	= 37.60	[kips]	
Anchor group governing shear resistance	ϕ V _n = from calc in above section	= 35.07	[kips]	
Consider anchor tension-shear interaction	check if $\frac{N_u}{\phi N_n} > 0.2$ and $\frac{V_u}{\phi V_n} > 0.2$	= No		ACI 318-19 17.8.3
	anchor tension-shear interaction ca	n be neglected		
	$= \frac{N_u}{\phi N_n} + \frac{V_u}{\phi V_n}$	= 0.00		ACI 318-19 17.8.3
	ratio = 0.00	< 1.2	ок	ACI 318-19 17.8.3

Anchor Seismic Design		Tension- Option D	Shear- Option C	PASS
Seismic - Tension	Applicable			ACI 318-19 17.10.5.1
Option D is selected				ACI 318-19 17.10.5.3 (d)
Jser has to ensure that the nultiplying overstrength fa	tensile load N $_{\rm u}$ user input above incctor $\Omega_{\rm o}$	ludes the seismic load E, with E i	ncreased by	ACI 318-19 17.10.5.3 (d)
Seismic SDC >= C and E > seismic requirements as pe	0.2U , Option D is selected to satisfind ACI 318-19 17.10.5.3	y additional		ACI 318-19 17.10.5.3
Seismic - Shear	Applicable			ACI 318-19 17.10.6.1
Option C is selected				17.10.6.3 (c)
Jser has to ensure that the multiplying overstrength fa	shear load V_u user input above incluctor Ω_{0}	udes the seismic load E, with E in	creased by	17.10.6.3 (c)
Seismic SDC >= C and E >	0.2U , Option C is selected to satisfy	y additional		ACI 318-19 17.10.6.3

Base Plate - Load Case 1

 $P_c = 9.6 \text{ kip}$ $M_x = 0.0$ kip-ft Code=ACI 318-19

Result Summary

geometries & weld limitations = PASS

limit states max ratio = 0.86

PASS

PASS

= 0.86

Minimum Base Plate Thickness for Rigidity

ratio = 1.288 / 1.500

Please note this check is NOT a code required check. It's a check to meet the design assumption only

P + Mx

To ensure that base plate is rigid and anchor tensile forces are elastic linearly distributed, the base plate thickness ideally to be thicker than the 1/4 of overhangs beyond yield line in both directions as indicated on the right sketch.

User can turn this check On/Off in Anchor Bolt - Config & Setting by checking or unchecking the option of Min base plate thickness $t_p \ge max$ of base plate overhangs m/4 and n/4

Column sect HSS6X6X3/8

$$d = 6.000$$

$$b_f = 6.000$$
 [in]

Base plate width & depth

[in]

AISC Design Guide 1 - 3.1.2 on Page 15

Base plate cantilever dimension

$$m = (N - 0.95 d)/2$$

$$n = (B - 0.95 b_f) / 2$$

Base plate thickness

$$t_p = from user input$$

= 1.288[in]

Suggested minimum base plate

$$t_{min} = max (m/4 , n/4)$$

City of Hamilton	ن	azebo			2022-047
Base Plate Thickness Check		ratio = 0.7	210 / 1.500	= 0.14	PASS
Column sect HSS6X6X3/8	d = 6.000 [in]	b _f = 6.000 [in]]	K	d
Base plate width & depth	B = 16.000 [in]	N = 16.000 [in]]	•	→ <u>=</u> 1
Pedestal width & depth	$b_c = 21.200$ [in]	$d_c = 21.200$ [in]	ا أ		
Base plate area	$A_1 = B \times N$	= 256.00 [in			
Pedestal area	$A_2 = b_c \times d_c$	= 449.44 [in	n ²]		
		I 318-19 Table 14.5.	.6.1	m (0.95d m
	$k = min (\sqrt{A_2/A_1}, 2)$	= 1.325		T	N
	AISC Design Guid	de 1 - 3.1.2 on Page	e 15	P.	1
Base plate cantilever dimension	m = (N - 0.95 d) / 2	= 5.150 [in			m or n
	$n = (B - 0.95 b_f) / 2$	= 5.150 [in	n]		
Base plate thickness	t _p = from user input	= 1.500 [in	n]		+ + + + + + + + + + + + + + + + + + + +
			l.	f,	
Concrete Base Bearing Strength					
Factored compression force	P _u = from user input		= 9.60	[kips]	
					ACI 318-19
	$k = \min \left(\sqrt{A_2/A_1} \right)$,2)	= 1.325		Table 14.5.6.1
Concrete strength & strength reduction factor	f _c = 3.0 [ksi]		$\phi_{c} = 0.65$		Table 21.2.1 (d)
Pedestal bearing strength	$\phi_c P_n = \phi_c k \ 0.85 \ f_c A_1$		= 562.20	[kips]	Table 14.5.6.1
	ratio = 0.02		> P _u	ОК	
Base Plate Required Thickness					
Factored forces on base plate	$P_u = 9.60$ [kips]		$M_{u} = 0.00$	[kip-ft]	
Column sect HSS6X6X3/8	d = 6.000 [in]		$b_f = 6.000$	[in]	ACI 318-19
Concrete strength & strength reduction factor	$f_c = 3.0$ [ksi]		$\phi_c = 0.65$		Table 21.2.1 (d)
reduction factor					AISC Design Guide 1
	$X = \frac{4 d b_f}{(d + b_f)^2} \frac{P}{\phi_c}$		= 0.017		3.1.2 on Page 16
	$\lambda = \min(\frac{2\sqrt{X}}{1+\sqrt{1-1}})$	-X , 1)	= 0.131		3.1.2 on Page 16
	$\lambda n' = \lambda \frac{\sqrt{d b_f}}{4}$		= 0.197	[in]	3.1.3 on Page 17
	L = max(m, n)		= 5.150	[in]	
Base plate strength & strength reduction factor	$F_y = 50.0$ [ksi]		$\phi_b = 0.90$		
Base plate thickness	$t_p = from user input$		= 1.500	[in]	
Base plate min. thickness required	$t_{min} = L \left[\frac{2 P_u}{\phi_b F_y B N} \right]^4$	0.5	= 0.210	[in]	3.1.2 on Page 16
				1700-1100	

ratio = 0.14

OK

 $< t_p$

Base Plate - Load Case 1 P + Mv $P_c = 9.6 \text{ kip}$ $M_v = 21.6 \text{ kip-ft}$

Code=ACI 318-19

Result Summary

geometries & weld limitations = PASS

limit states max ratio = 0.86

ratio = 1.288 / 1.500

PASS

PASS

= 0.86

Minimum Base Plate Thickness for Rigidity

Please note this check is NOT a code required check. It's a check to meet the design assumption only

To ensure that base plate is rigid and anchor tensile forces are elastic linearly distributed, the base plate thickness ideally to be thicker than the 1/4 of overhangs beyond yield line in both directions as indicated on the right sketch.

User can turn this check On/Off in Anchor Bolt - Config & Setting by checking or unchecking the option of Min base plate thickness $t_p \ge \max$ of base plate overhangs m/4 and n/4

Column sect HSS6X6X3/8

$$d = 6.000$$

 $b_f = 6.000$ [in]

Base plate width & depth

$$B = 16.000$$
 [in]

AISC Design Guide 1 - 3.1.2 on Page 15

Base plate cantilever dimension

$$m = (N - 0.95 d)/2$$

 $n = (B - 0.95 b_f) / 2$

Base plate thickness

$$t_p =$$
from user input

ratio = 0.793 / 1.500

[in]

Suggested minimum base plate

$$t_{min} = max (m/4 , n/4)$$

[in]

= 1.288[in]

= 0.53

PASS

Base Plate Thickness Check

Max Allowed Concrete Pressure

d = 6.000

$$b_f = 6.000$$

Column sect HSS6X6X3/8 Base plate width & depth

$$B = 16.000$$
 [in]

Pedestal width & depth

$$b_c = 21.200$$
 [in]

$$d_c = 21.200$$
 [in]

Base plate area

$$A_1 = B \times N$$

$$= 256.00 [in^2]$$

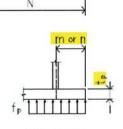
Pedestal area

$$A_2 = b_c \times d_c$$

$$= 449.44 [in^2]$$

$$k = min (\sqrt{A_2/A_1}, 2)$$
 = 1.325

AISC Design Guide 1 - 3.1.2 on Page 15


Base plate cantilever dimension

$$m = (N - 0.95 d)/2$$

$$n = (B - 0.95 b_f) / 2$$

Base plate thickness

$$t_p =$$
from user input

ACI 318-19

Concrete strength & strength

reduction factor

$$f_{c} = 3.0$$

$$\phi_c = 0.65$$

Pedestal max bearing stress

$$f_{p(max)} = \phi_c k \ 0.85 \ f_c$$

AISC Design Guide 1

$$q_{max} = f_{p(max)} \times B$$

Factored forces on base plate

$$P_u = 9.60$$
 [kips]

 $e_{crit} = N/2 - P_u / (2 q_{max})$

$$M_u = 21.60$$
 [kip-ft]

Eccentricity

$$e = M_u/P_u$$

$$= 27.000 [in]$$

Critical eccentricity

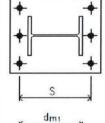
[ksi]

when $e > e_{crit}$, large moment case applied

Step 3 on Page 27

To achieve forces equilibrium in base plate to point A as shown in sketch on the bottom right, the actual concrete bearing stress f_p can be any value $f_p \le f_{p(max)} = 2.196$ ksi

Pedestal actual bearing stress used


$$f_p =$$

$$q_{max} = f_p \times B$$

Anchor Tensile Force Calc - Group Anchor Subject to Moment

Design Basis and Assumptions

- 1. Assume base plate is rigid and anchor tensile forces are elastic linearly distributed as shown on the right.
- 2. The concrete bearing stress is assumed to be uniformly distributed as per AISC Design Guide 1 section 3.3.1 User can select the option of base plate thickness $t_p \ge (max \text{ of base plate overhangs m or n}) / 4$ in Anchor Bolt - Config & Setting to ensure that base plate has adequate rigidity to match above assumptions.

Anchor Bolt Spacings

Anchor bolt pattern

$$=4B$$

Anchor bolt out-out spacing & column depth

$$s = 11.000$$
 [in]

$$d = 6.000$$
 [in]

Loads on Anchor Group

Anchor group load

$$P_{u} = 9.60$$

$$M_{u} = 21.60$$

[kip-ft]

Along Anchor Bolt Line - Single Anchor Tensile T; & No of Anchor Bolt n;

Anchor bolt line - moment arm

$$d_{m1} = 8.500$$
 [in]

Bolt line 1 - single anchor T₁

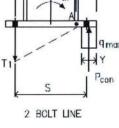
$$T_1 = 6.91$$
 [kips]

$$n_1 = 2$$

Sum of anchors tensile force

$$T_u = n_1 T_1$$

No of anchors in anchor group


$$n_t = n_1$$

Resistance moment by tensile

resisting tension

anchors

$$M_{ra} = n_1 T_1 d_{m1}$$

Moment by Concrete Pressure Reaction

Take the moment of concrtete pressure resultant P con to column flange/base plate intersect point A as shown on above sketch on the right

Max allowed concrete pressure	q _{max} = from above calculation	= 35.14	[kip/in]
Base plate cantilever length	m = from above calculation	= 5.150	[in]
Concrete pressure block length	Y =	= 0.667	[in]
Concrete pressure stress resultant	$P_{con} = q_{max} Y$	= 23.44	[kips]
Resistance moment by concrete	$M_{rc} = P_{con} x (m - 0.5Y)$	= 9.41	[kip-ft]

Below two sections are for verification purpose only. We want to verify that the anchor tensile forces and concrete pressure block length Y shown above make the base plate achieving force equilibrium

Verify Vertical Force Equilibrium

58			
Tensile anchors reaction on base plate - downward	$P_{ar} = n_1 T_1$	= 13.83	[kips]
Base plate compressive load- downward	P_u = from user load input	= 9.60	[kips]
Sum of downward forces on base plate	$P_{dn} = P_{ar} + P_{u}$	= 23.43	[kips]
Concrete pressure reaction on base plate - upward	$P_{con} = q_{max} Y$	= 23.44	[kips]
Sum of upward forces on base plate	$P_{up} = P_{con}$	= 23.44	[kips]

Conclusion: the vertical forces equilibrium is achieved

Summation of Moments Tak	en About Point A
--------------------------	------------------

Resistance moment by tensile
anchors downward reaction forces

$$M_{ra} = n_1 T_1 d_{m1}$$

Resistance moment by concrete

pressure reaction force

$$M_{rc} = P_{con} x (m - 0.5Y)$$

Sum of resistance moment

$$= M_{ra} + M_{rc}$$

Load on base plate

$$P_{u} = 9.60$$
 [kip

$$P_{u} = 9.60$$
 [kips]

$$M_u = 21.60$$
 [kip-ft]

Column sect HSS6X6X3/8

$$d = 6.000$$
 [in]

Sum of moments from base plate

$$= M_u - P_u \times 0.5 d$$

Conclusion: the summation of moments taken about point A equals to zero

Anchor Rod Steel Tensile Capacity

Bolt line
$$1$$
 - single anchor T_1

$$T_1 = 6.91$$

[kips]
$$n_1 = 2$$

Sum of all anchors tensile force along bolt line 1

$$T_u = n_1 \times T_1$$

Anchor rod effective section area

Anchor rod tensile resistance

$$A_{se} = 0.97$$
 [in²]

$$f_{uta} = 58.0$$

Strength reduction factor

$$\phi_{ts} = 0.75$$

$$T_r = \phi_{ts} n_t A_{se} f_{uta}$$

AISC Design Guide 1

ratio = 0.16

[in]

[ksi]

Base Plate Flexure Caused by Anchor Rod Tension

Anchor to column center distance

$$d = 6.000$$

[in]

$$t_f = 0.349$$

$$s_1 = 11.000$$
 [in]

$$f = s_1 / 2$$

Sum of all anchors tensile force

$$T_u = n_1 \times T_1$$

Anchor spacing

$$s_1 = 11.000$$
 [in]

$$s_2 = 11.000$$
 [in]

Column sect HSS6X6X3/8

$$d = 6.000$$
 [in]

$$x = 0.5$$
 ($s_1 - 0.95d$)

Base plate width & strength

$$B = 16.000$$
 [in]

 $t_{req-t} = 2.11 \left(\frac{T_u x}{B F_y} \right)^{0.5}$

$$F_y = 50.0$$
 [ksi]

= 0.452

[in]

Base Plate Flexure Caused by Conc Bearing Pressure

Plate Width Strip Bending

Plate flexure moment per unit width caused by conc bearing reaction - width strip as shown on the right sketch

Conc stress bearing length & base plate overhang

$$Y = 0.667$$

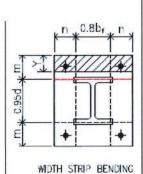
$$m = 5.150$$
 [in]

$$F_{v} = 50.0$$

$$\phi_b = 0.90$$

reduction factor Pedestal bearing stress used

When Y < m plate moment per unit width


$$0.9 \, F_y \frac{t^2}{4} = f_p Y \, (m-0.5Y)$$

[in]

[ksi]

$$t_{req-b1} = 2.11 \left(\frac{f_p Y (m-0.5Y)}{F_y} \right)^{0.5}$$

Plate Side Strip Bending

Plate flexure moment per unit width caused by conc bearing reaction - side strip as shown on the right sketch Refer to AISC Engineering Journal 2014 Q4 Volume 51 No 4 Page 234, for base plate side strip bending, use enlarged effective width b_{eff} as shown below

Conc stress length & plate overhang

$$Y = 0.667$$
 [in]

$$n = 5.150$$
 [in]

When Y < 2n

$$b_{eff} = Y/2 + n$$

Moment adjustment factor due to enlarged effective plate width

$$\beta = \frac{Y}{b_{eff}}$$

$$= 0.122$$

Pedestal bearing stress used

AISC DG1 Eq 3.3.15a-2

[ksi]

[in]

[in]

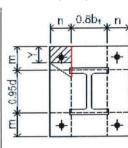
OK

Plate moment per unit width

$$0.9 \, F_y \frac{t^2}{4} = \frac{1}{2} f_p \, n^2 \, \beta$$

 $\boldsymbol{\beta}$ on above right is the factor to reduce plate moment due to enlarged plate effective width

$$t_{req-b2} = 2.11 \left(\frac{0.5 f_p n^2 \beta}{F_y} \right)^{0.5}$$


Base plate thickness

$$t_p =$$
from user input

Min required plate thickness

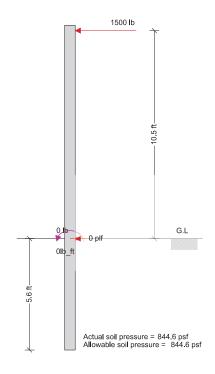
$$t_{min} = max (t_{req-t}, t_{req-b1}, t_{req-b2})$$

$$< t_p$$

SIDE STRIP BENDING

Point 2 Structural Engineers Inc

3701 Business Dr Suite 100 Sacramento, CA 95820


	Project				Job Ref.	
	Section				Sheet no./rev.	
	Calc. by	Date 8/3/2022	Chk'd by	Date	App'd by	Date

FLAGPOLE EMBEDMENT (IBC)

FOOTING DESIGN

In accordance with IBC 2018

Tedds calculation version 1.2.04

Soil capacity data

Allowable passive pressure L_{sbc} = **150** pcf Maximum allowable passive pressure P_{max} = **2000** psf Load factor 1 (1806.1) LDF_1 = **1.00** LDF_2 = **1.0**

Pole geometry

Shape of the pole Round

Diameter of the pole Dia = 30 in

Laterally restrained Yes

Load data

First point load $P_1 = 1500 \text{ lbs}$ Distance of P₁ from ground surface $H_1 = 10.5 \text{ ft}$ $P_2 = 0 lbs$ Second point load Distance of P2 from ground surface $H_2 = 0$ ft Uniformly distributed load W = 0 plf Start distance of W from ground surface a = 0 ft End distance of W from ground surface $a_1 = 0$ ft $M_1 = 0 lb_ft$ Applied moment Distance of M₁ from ground surface $H_3 = 0$ ft

Shear force and bending moment

Total shear force $F = P_1 + P_2 + W \times (a_1 - a) = 1500$ lbs

City of Hamilton	Gazebo	2022-047

Tekla	Tedds

Point 2 Structural Engineers Inc 3701 Business Dr

Suite 100 Sacramento, CA 95820

	Project				Job Ref.	
	Section				Sheet no./rev.	
	Calc. by	Date 8/3/2022	Chk'd by	Date	App'd by	Date

Total bending moment at grade
Distance of resultant lateral force

 $M_g = P_1 \times H_1 + P_2 \times H_2 + W \times (a_1 - a) \times (a + a_1) / 2 + M_1 = 15750 \text{ lb_ft}$ $h = abs(M_g / F) = 10.5 \text{ ft}$

Embedment depth (1807.3.2.2)

Embedment depth provided

Allowable lateral passive pressure

Embedment depth required

Actual lateral passive pressure

D = **5.63** ft

 $S_3 = min(P_{max}, L_{sbc} \times min(D, 12 ft)) \times LDF_1 \times LDF_2 = 844.6 psf$

 $D_1 = ((4.25 \times abs(F) \times h) / (S_3 \times Dia))^{0.5} = 5.63 \text{ ft}$

 $S_4 = (4.25 \times abs(F) \times h) / (D^2 \times Dia) = 844.6 psf$