

COLUSA AND GLENN GROUNDWATER AUTHORITIES

Colusa Subbasin

Joint Technical Advisory Committee GSP Development

August 14, 2020

Discussion Topics

- GSP Development Overview
- Projected Water Budgets
- Groundwater Dependent Ecosystem (GDE) Screening
- Well Monitoring Pilot Program

GSP Development Overview

Knowledge Building

Basin Setting

- Hydrogeologic Conceptual Model (HCM)
- Historical and Current Groundwater Conditions
- Draft Water Budgets
- Existing Monitoring Network Evaluation
- Integrated Hydrologic Model Development and Calibration
- Sustainable Management Criteria Approaches

Initial GSP Development

Basin Setting

- Groundwater
 Dependent
 Ecosystems
- Updated Water Budgets
- Management Area Overview
- Draft GSP Monitoring Network
- Draft Sustainable Management Criteria
- Initial Projects and Management Actions

GSP Refinements

- Basin Setting
 - Draft Management Areas
- Draft GSP Chapters
- Updated GSP Monitoring Network
- Updated Sustainable Management Criteria
- Projects and Management Actions (PMAs) Evaluation and Analysis
- Draft Funding Mechanisms

GSP Prep and Adoption

- Basin Setting
 - Updated Management Areas
- Data Management System
- Updated PMAs
- Updated Funding Mechanisms
- Complete Draft GSP

GSP Adoption and Submittal

Stakeholder Engagement and Outreach

5.a. Projected Water Budgets

8/14/2020

Projected Water Budgets

- Draft Water Budget Scenarios Developed for
 - Current Conditions (Lower Bookend)
 - Future Conditions with 2070 Climate Change (Upper Bookend)
- Additional Scenarios under Development
 - Future Conditions without Climate Change
 - Future Conditions with 2030 Climate Change
- Based on Most Recent Model Version
 - Refinements to crop ET and irrigation demands
 - Updated aquifer parameters
 - Updated pumping depths
 - Updated stream parameters 8/14/2020

Current Conditions Water Budget

- Recent Land Use, Surface Water Supplies, and Urban Demands
- 50 Years of Historical Hydrology (1966 2015)
- Land Use and Surface Water Supplies
 - 2013 Non-Shasta Critical Years
 - 2015 for Shasta Critical Years
- Urban Demands
 - 2015 Population and Per Capita Use

Future Conditions 2070 Water Budget

- Recent Land Use and Surface Water Supplies
- 50 Years of Historical Hydrology (1966 2015)*
- Land Use and Surface Water Supplies*
 - 2013 Non-Shasta Critical Years
 - 2015 for Shasta Critical Years
- Urban Demands
 - Projected Population and Per Capita Use

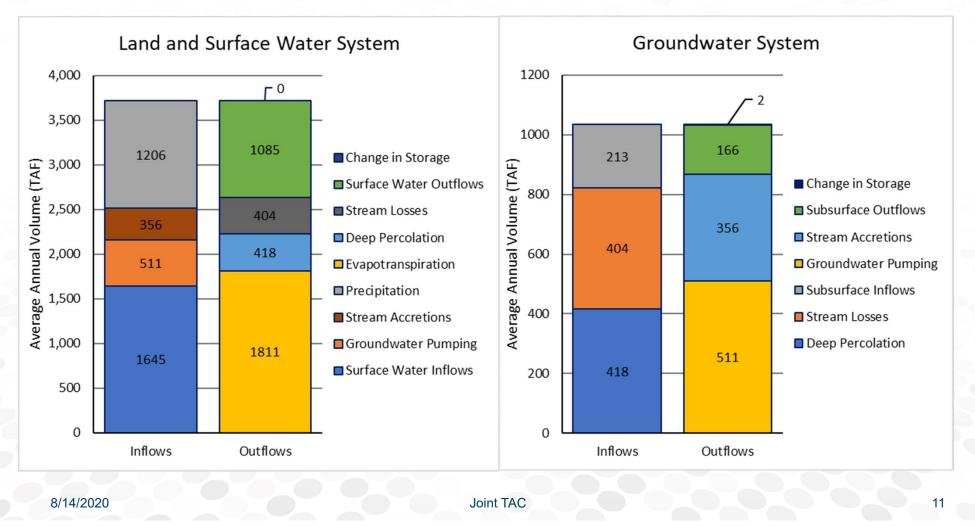
* Historical hydrology and surface water supplies modified based on DWR 2070 Central Tendency climate change projections

8/14/2020

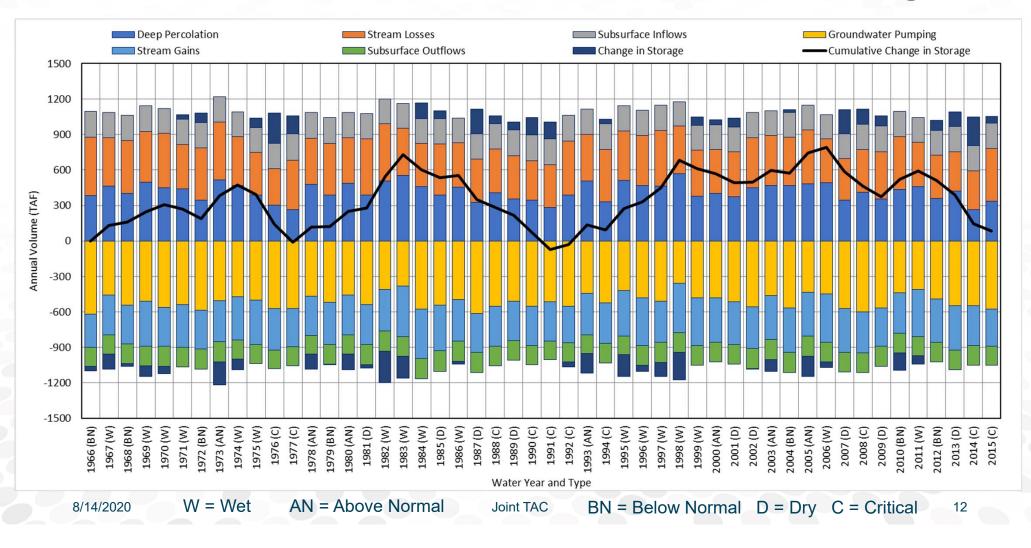
Bay-Delta Process Follow Up

- Reviewed Approach to Address Potential Impact of Bay Delta Process in Other Submitted GSPs
 - East San Joaquin
 - Merced
 - North and South Yuba
- East San Joaquin and Merced GSPs refer to process but do not make assumptions about changes
- North and South Yuba GSP does not mention Bay Delta process
- Additional Detail in Meeting Materials

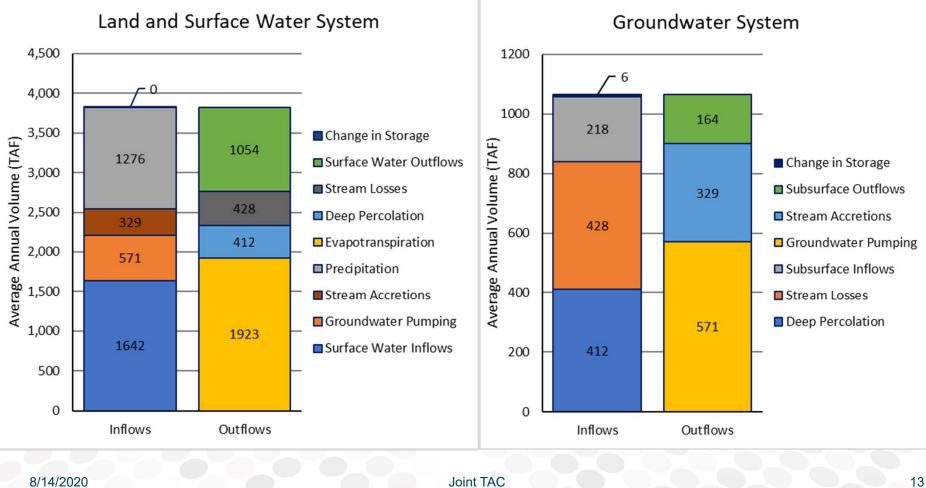
8/14/2020

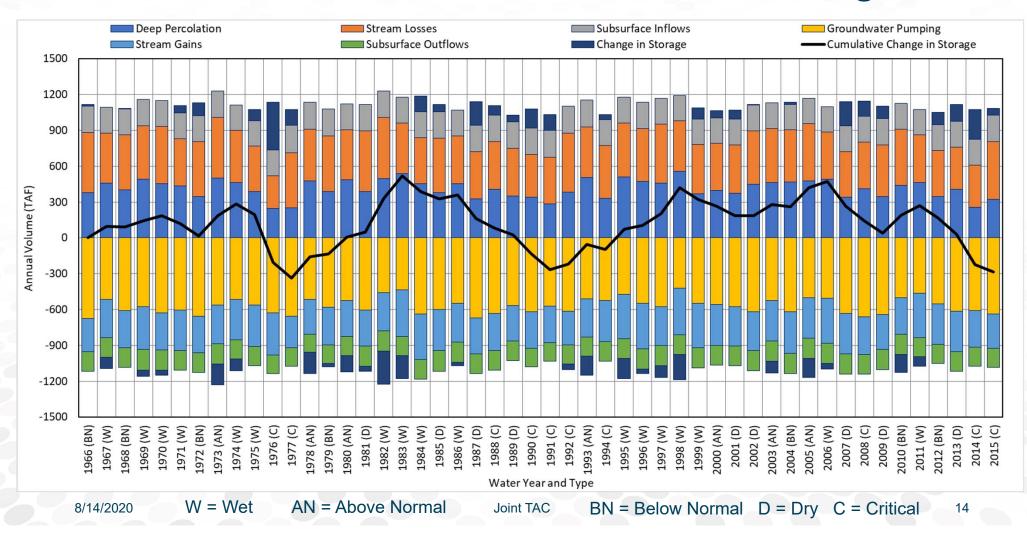

Water Budget 101

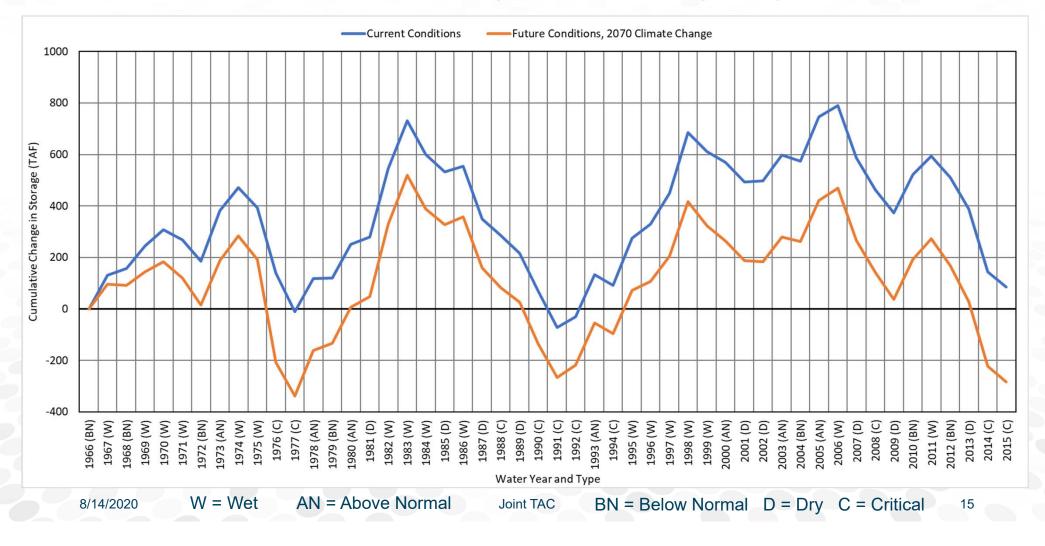
- Complete accounting of inflows, outflows, and change in storage
 - Inflows Outflows = Change in Storage
- Includes Land and Surface Water System and Groundwater System
- Estimated using DWR's integrated hydrologic model (C2VSimFG Beta2) with refinements for Colusa Subbasin


Primary Water Budget Drivers

- Land Use
- Precipitation
- Evapotranspiration
- Surface Water Supplies
- Groundwater Pumping
- Deep Percolation
- Surface Water Groundwater Interaction
- Interbasin Flows


Current Conditions Draft Water Budget Summary


Current Conditions Draft Annual Groundwater Budget


2070 Conditions Draft Water Budget Summary

2070 Conditions Draft Annual Groundwater Budget

Draft Cumulative Change in Storage by Scenario

Draft Observations

- Average annual change in storage differs between scenarios
 - Modest increase in storage under current conditions (+2 TAF/year)
 - Modest decrease in storage under 2070 conditions (-6 TAF/year)
 - Primary driver for difference is increased evapotranspiration and pumping under climate change
- Changes in storage (and groundwater levels) substantial over multi-year wet and dry cycles
- Changes in groundwater storage and levels likely greatest in groundwater dependent areas

Implications

- Multi-year wet and dry cycles should be considered in establishing Sustainable Management Criteria
 - Minimum Thresholds
 - Margin of Operational Flexibility
- Projects and management actions should consider
 - Flexibility to implement opportunistically
 - Accrual of benefits over time, in anticipation of dry cycles and impact on groundwater conditions

Next Steps

- Additional Analysis
 - Refinement of model calibration
 - Discretization of stream-aquifer interaction and interbasin flows
 - Comparison and coordination with neighboring basins
- Additional Scenarios
 - Future Conditions without Climate Change
 - Future Conditions with 2030 Climate Change
- Preparation of Draft GSP Section

5.b. Groundwater Dependent Ecosystems

Groundwater Dependent Ecosystems (GDEs)

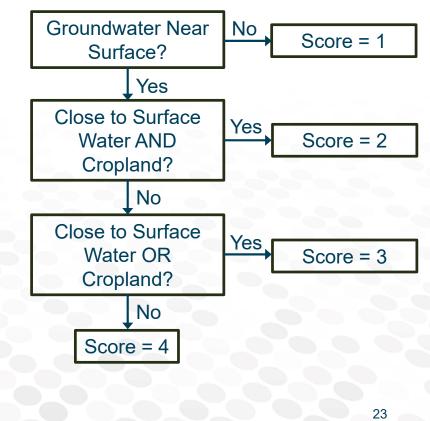
- Ecological communities or species that depend on groundwater emerging from aquifers or on groundwater occurring near the ground surface
- Must be identified in Basin Setting chapter of GSP
- Preliminary identification based on Natural Communities Commonly Associated with Groundwater (NCCAG) dataset from DWR/TNC
- Additional refinement included in Proposition 68 grant

Preliminary GDE Mapping

- Relatively few wetlands mapped – mostly in riparian corridors
- 2,795 polygons, 17,748 acres
- Major vegetation categories
 - Cottonwood ~ 31%
 - Bulrush ~22%
 - Willows ~15%
 - Valley Oak ~13%
 - Others ~18% (including Arundo ~4%) 8/14/2020

Approach

- Compile additional supporting data (e.g. depth to groundwater, presence of surface water, soil characteristics, etc.)
- Develop and apply criteria to refine characterization of GDEs
- Prepare maps and other supporting data for stakeholder engagement
- Further refine GDE characterization
- Incorporate refinements into appropriate sections of GSP
 - Basin Setting
 - Monitoring Networks
 - Sustainable Management Criteria
 - Projects and Management Actions

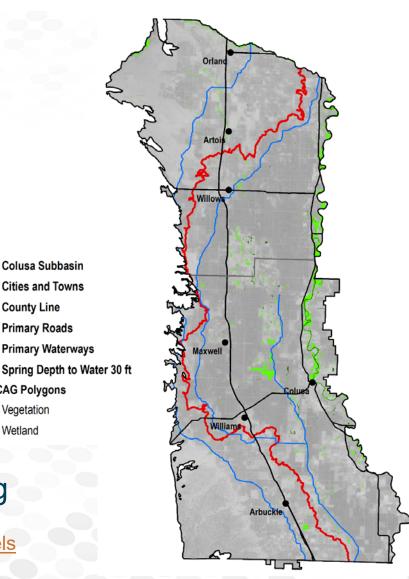

Progress Since Last Meeting

- Compiled Additional, Supporting
 Information
 - Depth to groundwater
 - Proximity to surface water
 - Proximity to irrigated cropland
- Developed Preliminary Scoring Criteria

Joint TAC

- Range from 1 to 4
- 1 = less likely
- -4 = more likely

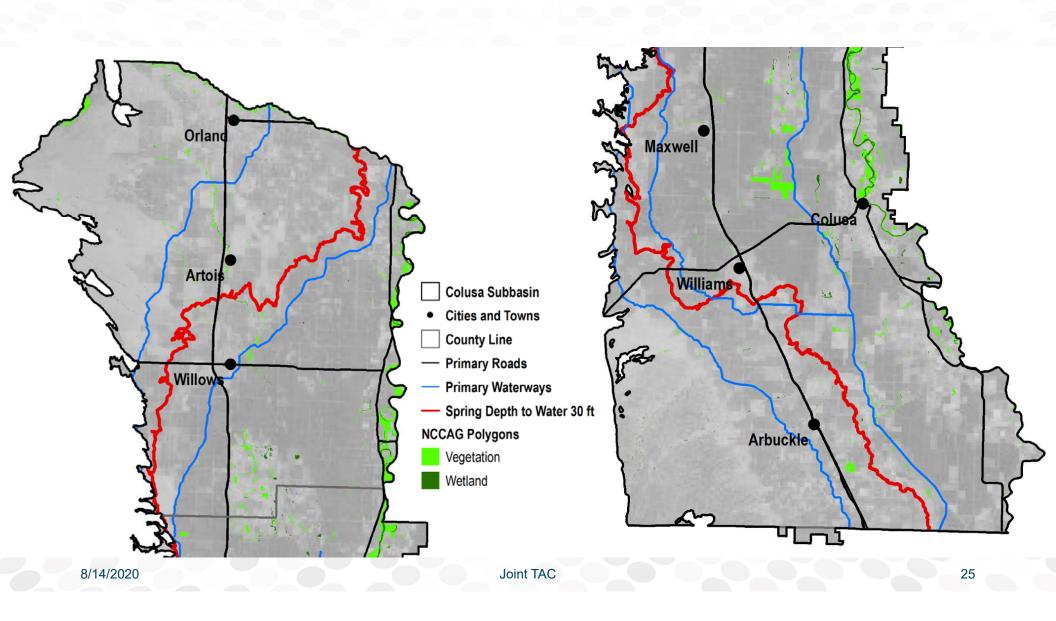
8/14/2020


Depth to Groundwater

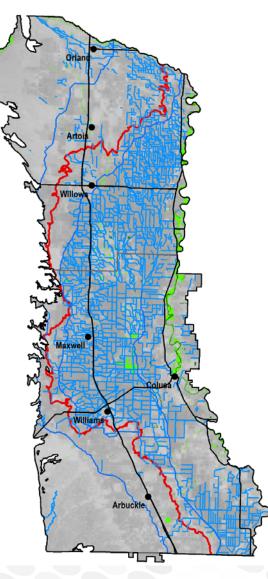
- Based on DWR Groundwater Monitoring Data
 - Accessed via DWR SGMA Data Viewer*
 - Spring measurements

8/14/2020

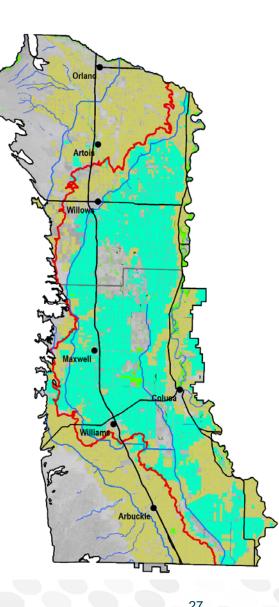
- 5-Year period from 2014 2018
- Characterize Areas with Depth Greater than 30 Feet
 - Consistent with TNC GDE guidance
 - Corresponds to expected deepest rooting


https://sgma.water.ca.gov/webgis/?appid=SGMADataViewer#gwlevels

Colusa Subbasin Cities and Towns

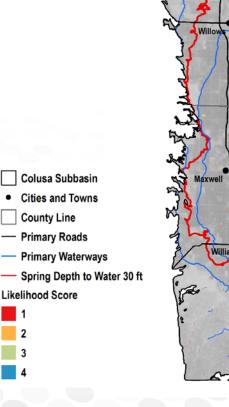

County Line **Primary Roads**

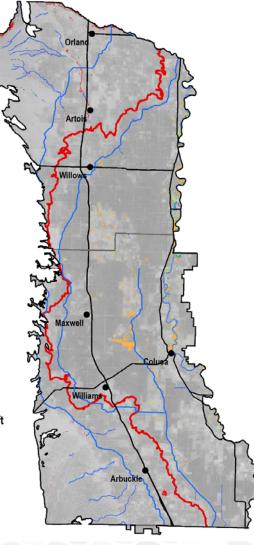
NCCAG Polygons Vegetation Wetland


Proximity to Surface Water

- Canals, ditches, and perennial streams identified based on National Hydrography Dataset
- Polygons within 150 feet of surface water assumed to potentially have access to surface water

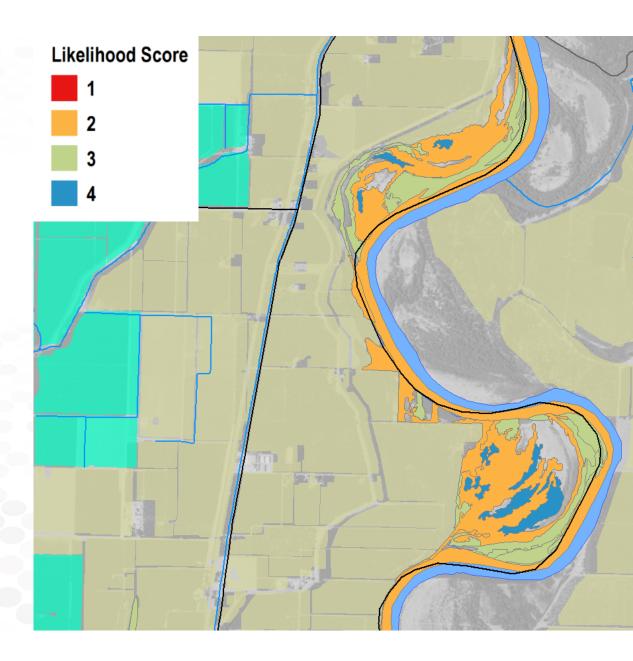
Proximity to Irrigated Cropland


- Irrigated cropland identified based on DWR land use survey data
- Polygons near irrigated fields assumed to potentially have access to surface water
 - Rice: 150 foot buffer
 - Other crops: 50 foot buffer

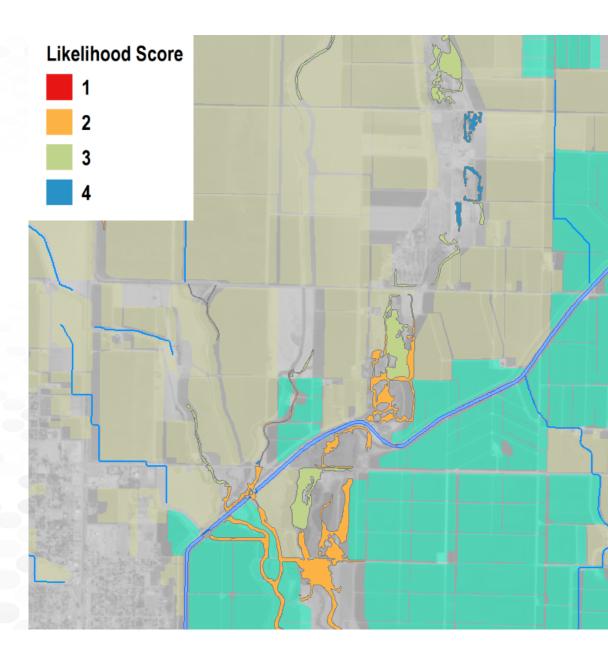


Preliminary Scoring Results

 Polygons and Acres by Scoring Category:


Score	Polygons	Acres
1 (less likely)	798	2,543
2	634	8,708
3	1,091	5,578
4 (more likely)	272	920
Total	2,795	17,748

Example


 Sacramento River Corridor near Glenn

8/14/2020

Example

• Northeast of Willows

Summary

- Simple Scoring Approach
- Relies on Public Data
- Potential for Refinements
 - Refined datasets
 - Adjustments to thresholds
 - Incorporation of additional datasets

Discussion Questions

- Comments on preliminary scoring approach and criteria?
- Next steps?

5.c. Well Monitoring Pilot Program

Program Goals

- Encourage Stakeholder Engagement/Involvement
- Collect Groundwater Extraction Volumes
- Collect Water Levels
- Incorporate Available Data into GSP Development
- Identify and Evaluate Options for Basin-Wide Implementation

Program Details

- Timeline
 - Program Development: Now through Dec.
 - Solicitation, Selection, and Installation: Jan. Mar. 2021
 - Implementation: Mar. 2021 Dec. 2021 or Later
- Eligibility
 - Willing to Share Data Publicly
 - Accepted Flow Meter
 - Selected Makes/Models
 - Proper Installation
 - Well Sounding Tube for Pressure Transducer
- Incentives: All or Part of Meter/Telemetry Costs

Recommended Flow Meters

- McCrometer
 - Water Specialties
 - McPropeller
- SeaMetrics
 - Ag3000
- Others, As Approved

Telemetry Options

- Single Option Selected for Program
- Desired Features
 - Collect Flow and Water Level Data
 - Cellular Communication
 - Solar Powered
 - Near Real-Time Web Access
 - Individual landowner access
 - Public access for all sites
 - Local Support
 - Low Cost

Ranch Systems (www.ranchsystems.com)

Joint TAC

- RS130 Telemetry Node
- Two Input Sensors
 - Flow Meter
 - Pressure Transducer
 - Expandable to Add Others
- Optical Sensor for Existing Mechanical Meters
- Mobile, Tablet, and Computer Access

8/14/2020

Ranch Systems (www.ranchsystems.com)

- Selected by Fox Canyon Groundwater Management Agency (Ventura County)
 - 70 well pilot program
 - 700 total irrigation wells
- Additional Background
 - Started in Napa/Sonoma
 - Customers include Chico Nut, Bullseye, Harry and David (Oregon)
 - Colusa County Farm Supply is reseller and servicer
- Cost
 - \$2,500 installed with first year data plan (\$240/year thereafter)
 - Includes solar

- Pressure transducer not included 8/14/2020 Joint TAC

Wildeye (www.mywildeye.com)

- Two Input Sensors
 - Flow Meter
 - Pressure Transducer
 - Expandable to Add Others
- Requires Flowmeter Signal (modbus or 4-20mA)
- Mobile, Tablet, and Computer Access

Wildeye (www.mywildeye.com)

- Based in Fresno with Local Rep in Sacramento
- Started in Australia and New Zealand
- Working Locally to Support SB88 Compliance
- Working with Freshwater Trust to Support Water Markets
- Cost
 - \$3,000 installed with first year data plan (\$180/year thereafter)
 - Includes solar
 - Pressure transducer included (200' cable)

Estimated Per-Site Costs

Similar Cost

- \$7-8k for Equipment & Data Service
- \$3-4k Installation
- \$10-12k Total
- Can Receive Discount for Volume
- Reduce Program Costs By
 - Requiring landowner to install flowmeter
 - Connecting to existing flowmeter

Ranch Systems

Component	Unit Cost	Installation	Total
Flowmeter, 12"	\$2,500	\$2,500	\$5,000
Pressure Transducer, 200'	\$1,250	\$750	\$2,000
Ranch Systems RS130	\$2,500	\$0	\$2,500
Cell Service (1 year)	\$180	\$0	\$180
Subtotal	\$6 <i>,</i> 430	\$3,250	\$9,680
20% Contingency	\$1,286	\$650	\$1,936
Grand Total	\$7,716	\$3,900	\$11,616

Wildeye

Component	Unit Cost	Installation	Total
Flowmeter, 12"	\$2,500	\$2,500	\$5,000
Pressure Transducer, 200'	\$0	\$0	\$0
Wildeye Outpost	\$3,000	\$0	\$3,000
Cell Service (1 year)	\$180	\$0	\$180
Subtotal	\$5,680	\$2,500	\$8,180
20% Contingency	\$1,136	\$500	\$1,636
Grand Total	\$6,816	\$3,000	\$9,816

Overall Program Cost Estimate

- Assumptions
 - All sites need flowmeters
 - Landowner pays installation cost

Component	Unit Cost	Quantity	Total
Program Design	\$10,000	1	\$10,000
Selection and Site Visits	\$1,250	5	\$6,250
Implementation Support	\$500	5	\$2,500
Program Evaluation	\$10,000	1	\$10,000
Monitoring & Telemetry	\$7,500	5	\$37,500
Total			\$66,250

Overall Program Cost Estimate

- Assumptions
 - Landowner provides flowmeter

Component	Unit Cost	Quantity	Total
Program Design	\$10,000	1	\$10,000
Selection and Site Visits	\$1,250	7	\$8,750
Implementation Support	\$500	7	\$3,500
Program Evaluation	\$10,000	1	\$10,000
Monitoring & Telemetry	\$4,700	7	\$32,900
Total			\$65,150

Discussion Questions

- General comments on program design?
- Thoughts/next steps regarding telemetry options?
- Thoughts regarding incentives?